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Summary

The RELAP-7 code is the next generation nuclear reactor system safety analysis code be-
ing developed at the Idaho National Laboratory (INL). The code is based on the INL’s
modern scientific software development framework, MOOSE (Multi-Physics Object Ori-
ented Simulation Environment). The overall design goal of RELAP-7 is to take advantage
of the previous thirty years of advancements in computer architecture, software design, nu-
merical integration methods, and physical models. The end result will be a reactor systems
analysis capability that retains and improves upon RELAP5’s and TRACE’s capabilities
and extends their analysis capabilities for all reactor system simulation scenarios.

RELAP-7 is a new project started in Fiscal Year 2012. It will become the main re-
actor systems simulation toolkit for the LWRS (Light Water Reactor Sustainability) pro-
gram’s RISMC (Risk Informed Safety Margin Characterization) effort and the next gen-
eration tool in the RELAP reactor safety/systems analysis application series. The key to
the success of RELAP-7 is the simultaneous advancement of physical models, numeri-
cal methods, and software design while maintaining a solid user perspective. Physical
models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differ-
ential Equations) and experimental based closure models. RELAP-7 utilizes well-posed
governing equations for compressible two-phase flow, which can be strictly verified in a
modern verification and validation effort. Closure models used in RELAP5 and newly
developed models will be reviewed and selected to reflect the progress made during the
past three decades and provide a basis for the closure relations that will be required in
RELAP-7. RELAP-7 uses modern numerical methods, which allow implicit time integra-
tion, second-order schemes in both time and space, and strongly coupled multi-physics.

RELAP-7 is written with object oriented programming language C++. By using the
MOOSE development environment, the RELAP-7 code is developed by following the
same modern software design paradigms used for other MOOSE development efforts.
The code is easy to read, develop, maintain, and couple with other codes. Most impor-
tantly, the modern software design allows the RELAP-7 code to evolve efficiently with
time. MOOSE is an HPC development and runtime framework for solving computational
engineering problems in a well planned, managed, and coordinated way. By leveraging
millions of lines of open source software packages, such as PETSC (a nonlinear solver de-
veloped at Argonne National Laboratory) and LibMesh (a Finite Element Analysis pack-
age developed at University of Texas), MOOSE reduces the expense and time required
to develop new applications. MOOSE provides numerical integration methods and mesh
management for parallel computation. Therefore RELAP-7 code developers have been
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able to focus more upon the physics and user interface capability. There are currently
over 20 different MOOSE based applications ranging from 3-D transient neutron trans-
port, detailed 3-D transient fuel performance analysis, to long-term material aging. Multi-
physics and multi-dimensional analysis capabilities, such as radiation transport and fuel
performance, can be obtained by coupling RELAP-7 and other MOOSE-based applica-
tions through MOOSE and by leveraging with capabilities developed by other DOE pro-
grams. This allows restricting the focus of RELAP-7 to systems analysis type simulations
and gives priority to retain and significantly extend RELAP5’s and TRACE’s capabilities.

During the Fiscal Year 2012, MOOSE was extended to better support system analysis
code development. The software structure for RELAP-7 had been designed and developed.
Numerical stability schemes for single-phase flow, which are needed for continuous finite
element analysis, have been developed. Major physical components have been completed
(designed and tested) to support a proof of concept demonstration of RELAP-7. The case
selected for initial demonstration of RELAP-7 was the simulation of a two-loop, steady
state PWR system. During Fiscal Year 2013, both the homogeneous equilibrium two-
phase flow model and the seven-equation two-phase flow model have been implemented
into RELAP-7. A number of physical components with two-phase flow capability have
been developed to support the simplified boiling water reactor (BWR) station blackout
(SBO) analyses. The demonstration case includes the major components for the primary
system of a BWR, as well as the safety system components for reactor core isolation
cooling (RCIC) and the wet well of a BWR containment. The homogeneous equilibrium
two-phase flow model was used in the simplified BWR SBO analyses. During Fiscal
Year 2014, more detailed implementation of the physical models as well as the code per-
formance improvements associated with the seven-equation two-phase flow model were
carried out in order to demonstrate more refined BWR SBO analyses with more realistic
geometries.

During Fiscal Year 2015 and 2016 (to date) the ability to use realistic equations of state
based on the IAPWS-95 formulation for water/steam, using a numerically efficient Spline-
Based Table Look-up approach, were incorporated. Also incorporated with this approach
was an extension to include the metastable states needed by the 7-equation nonequilib-
rium two-phase model used by RELAP-7. An improved entropy viscosity method was
implemented for solution stabilization. New and improved boundary conditions for both
single-phase and nonequilibrium, 7-equation, two-phase flows, consistent with the method
of characteristics, were included. Constitutive equations were added which depend upon
the phase’s topological sizes and arrangements, e.g. interfacial area concentration and its
effects, wall friction and heat transfer, interfacevfriction and heat transfer, etc. Currently,
the topology-dependent closures are limited to pre-CHF, vertical flows, but extensions to
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CHF and to horizontal flows are ongoing. This revision (Revision 2) of the RELAP-7
Theory Manual is expanded to describe these new features in detail.

In summary, the MOOSE based RELAP-7 code development is an ongoing effort. The
MOOSE framework enables rapid development of the RELAP-7 code. The developmental
efforts and results demonstrate that the RELAP-7 project is on a path to success. This the-
ory manual documents the main features implemented into the RELAP-7 code. Because
the code is an ongoing development effort, this RELAP-7 Theory Manual will evolve with
periodic updates to keep it current with the state of the development, implementation, and
model additions/revisions.
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1 Introduction

The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is the next generation
nuclear reactor system safety analysis code being developed at Idaho National Laboratory
(INL). The code is based on the INL’s modern scientific software development framework
MOOSE (Multi-Physics Object Oriented Simulation Environment) [5]. The overall de-
sign goal of RELAP-7 is to take advantage of the previous thirty years of advancements in
computer architecture, software design, numerical integration methods, and physical mod-
els. The end result will be a reactor systems analysis capability that retains, and improves
upon, RELAP5’s [6] and TRACE’s [2] abilities and extends the analysis capability for all
reactor system simulation scenarios.

The RELAP-7 project, which began in Fiscal Year 2012, will become the main reac-
tor systems simulation toolkit for LWRS (Light Water Reactor Sustainability) program’s
RISMC (Risk Informed Safety Margin Characterization) effort and the next generation
tool in the RELAP reactor safety/systems analysis application series. The key to the suc-
cess of RELAP-7 is the simultaneous advancement of physical models, numerical meth-
ods, and software design while maintaining a solid user perspective. Physical models
include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equa-
tions) and experimental based closure models. RELAP-7 will utilize well-posed governing
equations for two-phase flow, which can be strictly verified in a modern verification and
validation effort. Closure models used in RELAP5, TRACE, and other newly developed
models will be reviewed and selected to reflect the progress made during the past three
decades and provide a basis for the closure relations that will be required in RELAP-7.
RELAP-7 uses modern numerical methods, which allow implicit time integration, second-
order schemes in both time and space, and strongly coupled multi-physics.

MOOSE is INL’s development and runtime framework for solving computational engi-
neering problems in a well planned, managed, and coordinated way. By using the MOOSE
development environment, the RELAP-7 code is developed by following the same mod-
ern software design paradigms used for other MOOSE development efforts. The code is
easy to read, develop, maintain, and couple with other codes. Most importantly, the mod-
ern software design allows the RELAP-7 code to evolve efficiently with time. MOOSE
provides numerical integration methods and mesh management for parallel computation.
Therefore RELAP-7 code developers need primarily to focus upon the physics and user
interface capability.

There are currently over 20 different MOOSE based applications ranging from 3-D
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transient neutron transport, detailed 3-D transient fuel performance analysis, to long-term
material aging. The advantage of multi-physics and multi-dimensional analyses capa-
bilities, such as radiation transport and fuel performance, can be obtained by coupling
RELAP-7 and other MOOSE-based applications (through MOOSE) and by leveraging
with capabilities developed by other DOE programs. This allows restricting the focus of
RELAP-7 to systems analysis-type simulations and gives priority to retain, and signifi-
cantly extend RELAP5’s capabilities.

Because RELAP-7 is an ongoing development effort, this theory manual will evolve
with periodic updates to keep it current with the state of the development, implementa-
tion, and model revisions. It is noted that, in some instances, the models reported in this
initial version of the theory manual cover phenomena which are not yet implemented, for
example the species balance equation for two phase flows. But when it made sense to in-
clude derivations, which we have already developed, or descriptions of models which are
currently ongoing, such as the entropy viscosity method, we have included such.

1.1 RELAP-7 Description of Approach

An overall description of the RELAP-7 architecture, governing theory, and computational
approach is first given as an instructive, and executive overview of the RELAP-7 project
direction.

1.1.1 Software Framework

MOOSE is INL’s development and runtime environment for the solution of multi-physics
systems that involve multiple physical models or multiple simultaneous physical phe-
nomena. The systems are generally represented (modeled) as a system of fully coupled
nonlinear partial differential equation systems (an example of a multi-physics system is
the thermal feedback effect upon neutronics cross-sections where the cross-sections are a
function of the heat transfer). Inside MOOSE, the Jacobian-Free Newton Krylov (JFNK)
method [7, 8] is implemented as a parallel nonlinear solver that naturally supports effec-
tive coupling between physics equation systems (or Kernels). The physics Kernels are de-
signed to contribute to the nonlinear residual, which is then minimized inside of MOOSE.
MOOSE provides a comprehensive set of finite element support capabilities (LibMesh [9],
a Finite Element library developed at University of Texas) and provides for mesh adapta-
tion and parallel execution. The framework heavily leverages software libraries from DOE
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SC and NNSA, such as the nonlinear solver capabilities in either the the Portable, Extensi-
ble Toolkit for Scientific Computation (PETSc [10]) project or the Trilinos project [11] (a
collection of numerical methods libraries developed at Sandia National Laboratory). Ar-
gonne’s PETSc group has recently joined with the MOOSE team in a strong collaboration
wherein they are customizing PETSc for our needs. This collaboration is strong enough
that Argonne is viewed as a joint developer of MOOSE.

A parallel and tightly coordinated development effort with the RELAP-7 development
project is the Reactor Analysis Virtual control ENvironment (RAVEN). This MOOSE-
based application is a complex, multi-role software tool that will have several diverse tasks
including serving as the RELAP-7 graphical user interface, using RELAP-7 to perform
RISMC focused analysis, and controlling the RELAP-7 calculation execution.

Together, MOOSE/RELAP-7/RAVEN comprise the systems analysis capability of the
LWRS RISMC ToolKit.

1.2 Governing Theory

The primary basis of the RELAP-7 governing theory includes 7-equation two-phase flow,
reactor core heat transfer, and reactor kinetics models. While RELAP-7 is envisioned to
incorporate both single and two-phase coolant flow simulation capabilities encompassing
all-speed and all-fluids, the main focus in the immediate future of RELAP-7 development
is LWRs. Thus, the flow summary is restricted to the two-phase flow model.

1.2.1 7-Equation Two-Phase Model

To simulate light water (nuclear) reactor safety and optimization scenarios there are key is-
sues that rely on in-depth understanding of basic two-phase flow phenomena with heat and
mass transfer. Within the context of these two-phase flows, two bubble-dynamic phenom-
ena boiling (or heterogeneous boiling) and flashing or cavitation (homogeneous boiling),
with bubble collapse, are technologically very important. The main difference between
boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limita-
tions on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing
is limited primarily by inertial effects in the surrounding liquid. The flashing process tends
to be far more explosive (or implosive), and is more violent and damaging (at least in the
near term) than the bubble dynamics of boiling. However, other problematic phenomena,
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such as departure from nucleate boiling (DNB) and CRUD deposition, are intimately con-
nected with the boiling process. Practically, these two processes share many details, and
often occur together.

The state of the art in two-phase modeling exhibits a lack of general agreement amongst
the so-called experts even regarding the fundamental physical models that describe the
complex phenomena. There exist a large number of different models: homogeneous mod-
els, mixture models, two-fluid models, drift-flux models, etc. The various models have
a different number of variables, a different number of describing equations, and even the
definition of the unknowns varies with similar models. There are conservative formula-
tions, non-conservative formulations, models and techniques for incompressible flows and
also for compressible flows. Huge Mach number variations can exist in the same prob-
lems (Mach number variations of 0.001 to over 100 with respect to mixture sound speed)
high-speed versus low-speed gives way to the need for all-speed. In their recent com-
pilation [12], Prosperetti and Tryggvason made important statements that have generally
been given insufficient attention in the past: ”uncertainties in the correct formulation of
the equations and the modeling of source terms may ultimately have a bigger impact on
the results than the particular numerical method adopted.” ”Thus, rather than focusing on
the numeric alone, it makes sense to try to balance the numerical effort with expected fi-
delity of the modeling”...”The formulation of a satisfactory set of average-equations mod-
els emerges as the single highest priority in the modeling of complex multiphase flows.”

Because of the expense of developing multiple special-purpose simulation codes (at
both the system and the detailed multi-dimensional level) and the inherent inability to
couple information from these multiple, separate length- and time-scales, efforts at the
INL have been focused toward development of multi-scale approaches to solve those mul-
tiphase flow problems relevant to light water reactor (LWR) design and safety analysis.
Efforts have been aimed at developing well-designed unified physical/mathematical and
high-resolution numerical models for compressible, all-speed multiphase flows spanning:
(1) well-posed general mixture level (true multiphase) models for fast transient situations
and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve inter-
face level phenomena like flashing and boiling flows, and critical heat flux determination,
and (3) multi-scale methods to resolve (1) and (2) automatically, depending upon speci-
fied mesh resolution, and to couple different flow models (single-phase, multiphase with
several velocities and pressures, multiphase with single velocity and pressure, etc.). In
other words, we are extending the necessary foundations and building the capability to
simultaneously solve fluid dynamic interface problems as well as multiphase mixtures
arising from boiling, flashing of superheated liquid, and bubble collapse, etc. in LWR
systems. Our ultimate goal is to provide models that, through coupling of system level
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and multi-dimensional detailed level codes, resolve interfaces for larger bubbles (DNS-
like) with single velocity, single pressure treatment (interface capturing) and average (or
homogenize) the two-phase flow field for small bubbles with two-velocity, two-pressure
with well-posed models.

The primary, enabling feature of the INL (Idaho National Laboratory) advanced multi-
scale methodology for multiphase flows involves the way in which we deal with multi-
phase mixtures. This development extends the necessary foundations and builds the ca-
pability to simultaneously solve fluid dynamic interface problems as well as multiphase
mixtures arising from boiling, flashing or cavitation of superheated liquid, and bubble col-
lapse, etc. in light water reactor systems. Our multi-scale approach is essentially to solve
the same equations everywhere with the same numerical method (in pure fluid, in multi-
velocity mixtures, in artificially smeared zones at material interfaces or in mixture cells, in
phase transition fronts and in shocks). Some of the advantages of this approach include:
coding simplicity and robustness as a unique algorithm is used, conservation principles are
guaranteed for the mixture, interface conditions are perfectly matched, and the ability to
include the dynamic appearance/disappearance of interfaces. This method also allows the
coupling of multi-velocities, multi-temperature mixtures to macroscopic interfaces where
a single velocity must be present. This entails development on two main fronts. The first
requires the derivation (design) of theoretical models for multiphase and interfacial flows
whose mathematical description (equation system) is well-posed and exhibits hyperbol-
icity, exhibiting correct wave dynamics at all scales. The second requires the design of
appropriate numerical schemes to give adequate resolution for all spatial and time scales
of interest.

Because of the broad spectrum of phenomena occurring in light water nuclear reactor
coolant flows (boiling, flashing, and bubble collapse, choking, blowdown, condensation,
wave propagation, large density variation convection, etc.) it is imperative that models
accurately describe compressible multiphase flow with multiple velocities, and that the
models be well-posed and unconditionally hyperbolic. The currently popular state of the
art two-phase models assume the pressures in each phase are equal, i.e. they are single
pressure models, referred to herein as the “classical” 6-equation model. This approach
leads to a system of equations that is ill-posed, not hyperbolic, and it has imaginary char-
acteristics (eigenvalues) that give the wrong wave dynamics. The classical 6-equation
model is inappropriate for transient situations and it is valid only for flows dominated
by source terms. Numerical methods for obtaining the solution of the 6-equation model
rely on dubious properties of the numerical scheme (for example truncation error induced
artificial viscosity) to render them numerically well-posed over a portion of the compu-
tational spectrum. Thus they cannot obtain grid-converged solutions (the truncation error
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goes down thus the artificial viscosity diminishes and the ill-posed nature returns). This
calls into question the possibility of obtaining “verification”, and thus, “validation” (what
does it mean to validate a model that cannot be verified?).

To meet this criterion, we have adopted the 7-equation two-phase flow model [13–
15]. This equation system meets our requirements, as described above it is hyperbolic,
well-posed, and has a very pleasing set of genuinely nonlinear and linearly degener-
ate eigenvalues . This 7-equation system is being implemented in RELAP-7, via the
INL MOOSE (Multi-physics, Object Oriented Simulation Environment) finite element
framework, through a 7-step progression designed to go successively from single-phase
compressible flow in a duct of spatially varying cross-sectional area to the compressible,
two-phase flow with full thermodynamic and mechanical nonequilibrium. This same 7-
equation model, along with its reduced subsystems, is being utilized as described above
to build Bighorn, the next generation 3-D high-resolution, multiscale two-phase solver.
This will give a unique capability of consistently coupling the RELAP-7 system analy-
sis code to our multi-dimensional, multi-scale, high-resolution multiphase solver and the
other MOOSE-based fuels performance packages.

There is yet another benefit to this approach alluded to above with the mention of re-
duced subsystems of the 7-equation model. Because of the way the 7-equation system
for two-phase flow is constructed, it can evolve to a state of mechanical equilibrium (pha-
sic pressure and velocity equilibrium) whereby a very nice 5-equation system results, and
even further to thermodynamic equilibrium (phasic temperature and Gibb’s energy equilib-
rium) whereby the classical 3-equation homogeneous equilibrium model (HEM) results.
The rate at which these various equilibrium states are reached can be allowed to occur
naturally or they can be controlled explicitly to produce a locally reduced model (reduced
subsystem) to couple/patch with simpler models. For example this reduction method en-
ables the coupling of zones in which total or partial nonequilibrium effects are present to
zones evolving in total equilibrium; or it can be used to examine the admissible limits of a
physical system because all limited models are included in this general formulation.

1.2.2 Core Heat Transfer and Reactor Kinetics

The nuclear reaction that takes place within the reactor core generates thermal energy
inside the fuel. Also, the passive solid structures, such as piping and vessel walls and
the internal vessel structures, represent significant metal masses that can store and release
large amounts of thermal energy depending on the reactor fluid (coolant) temperature. The
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RELAP-7 code must calculate the heat conduction in the fuel and the metal structures to
simulate the heat-transfer processes involved in thermal-energy transport. Therefore, in
addition to the two-phase fluid dynamics model described above, RELAP-7 necessarily
simulates the heat transfer process with reactor kinetics as the heat source. The heat-
conduction equation for cylindrical or slab geometries is solved to provide thermal history
within metal structures such as fuel and clad. The volumetric power source in the heat
conduction equation for the fuel comes from the point kinetics model with thermal hy-
draulic reactivity feedback considered [16]. The reactor structure is coupled with the ther-
mal fluid through energy exchange (conjugate heat transfer) employing surface convective
heat transfer [17] within the fluid . The fluid, heat conduction, conjugate heat transfer
and point kinetics equations may be solved in a fully coupled fashion in RELAP-7 in con-
trast to the operator-splitting or loose coupling approach used in the existing system safety
analysis codes. For certain specific transients, where three-dimensional neutronics effects
are important (i.e., rod ejection), three-dimensional reactor kinetics capabilities are avail-
able through coupling with the RattleSNake [18] code. RattleSNake is a reactor kinetics
code with both diffusion and transport capabilities being developed at INL based on the
MOOSE framework.

1.3 Computational Approach

Stated previously, the MOOSE framework provides the bulk of the ”heavy lifting” avail-
able to MOOSE-based applications with a multitude of mathematical and numerical li-
braries. For RELAP-7, LibMesh [9] provides the second-order accurate spatial discretiza-
tion by employing linear basis, one-dimensional finite elements. The Message Passing
Interface (MPI, from Argonne National Laboratory) provides for distributed parallel pro-
cessing. Intel Threading Building Blocks (Intel TBB) allows parallel C++ programs to
take full advantage of multicore architecture found in most large-scale machines of today.
PETSc (from Argonne), Trilinos (from Sandia), and Hypre [19] (from Lawrence Liver-
more National Laboratory) provide the mathematical libraries and nonlinear solver capa-
bilities for JFNK. In MOOSE, a stiffly-stable, second-order backward difference (BDF2)
formulation is used to provide second-order accurate time integration for strongly coupled
physics in JFNK.

With the objective of being able to handle the flow all-fluids at all-speeds, RELAP-7 is
also being designed to handle any systems-level transient imaginable. This can cover the
typical design basis accident scenarios (on the order of one second, or less, time scales)
commonly associated with RELAP5 simulations to reactor core fuel burnup simulations
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(on the order of one year time scales). Unfortunately, the JFNK algorithm can be ineffi-
cient in both of these time scale extremes. For short duration transients, typically found in
RELAP5 simulations, the JFNK approach requires a significant amount of computational
effort be expended for each time step. If the simulation requires short time steps to re-
solve the physics coupling, JFNK may not be necessary to resolve the nonlinear coupling.
The Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) algorithm [20, 21] is
an operator-split semi-implicit time integration method that has some similarities with RE-
LAP5’s time integration method but does not suffer from phase and amplitude errors, given
a stable time step. Conversely for very long duration transients, JFNK may not converge
for very large time steps as the method relies on resolving the nonlinear coupling terms,
and thus, may require an initial estimate of the solution close to the advanced solution
time which maybe unavailable. Recently, INL LDRD funds have been directed toward
developing a point implicit time integration method for slow transient flow problems [22].
These topics may be addressed in future versions of RELAP-7. Thus, a three-level time
integration approach is being pursued to yield an all-time scale capability for RELAP-7.
The three integration approaches are described as follows:

1. The JFNK method easily allows implicit nonlinear coupling of dependent physics
under one general computational framework. Besides rapid (second-order) conver-
gence of the iterative procedure, the JFNK method flexibly handles multiphysics
problems when time scales of different physics are significantly varied during tran-
sients. The key feature of the JFNK method is combining Newton’s method to solve
implicit nonlinear systems with Krylov subspace iterative methods. The Krylov
methods do not require an explicit form of the Jacobian, which eliminates the com-
putationally expensive step of forming Jacobian matrices (which also may be quite
difficult to determine analytically), required by Newton’s method. The matrix-vector
product can be approximated by the numerical differentiation of nonlinear resid-
ual functions. Therefore, JFNK readily integrates different physics into one solver
framework.

2. The PCICE computational fluid dynamics (CFD) scheme, developed for all-speed
compressible and nearly incompressible flows, improves upon previous pressure-
based semi-implicit methods in terms of accuracy and numerical efficiency with a
wider range of applicability. The PCICE algorithm is combined with the Finite Ele-
ment Method (FEM) spatial discretization scheme to yield a semi-implicit pressure-
based scheme called the PCICE-FEM scheme. In the PCICE algorithm, the total
energy equation is sufficiently coupled to the pressure Poisson equation to avoid iter-
ation between the pressure Poisson equation and the pressure-correction equations.
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Both the mass conservation and total energy equations are explicitly convected with
the time-advanced explicit momentum. The pressure Poisson equation then has the
time-advanced internal energy information it requires to yield an accurate implicit
pressure. At the end of a time step, the conserved values of mass, momentum,
and total energy are all pressure-corrected. As a result, the iterative process usually
associated with pressure-based schemes is not required. This aspect is highly advan-
tageous when computing transient flows that are highly compressible and/or contain
significant energy deposition, chemical reactions, or phase change.

3. Semi-implicit methods can step over certain fine time scales (i.e., ones associated
with the acoustic waves), but they still have to follow material Courant time step-
ping criteria for stability or convergence purposes. The new point implicit method
is devised to overcome these difficulties [22]. The method treats only certain so-
lution variables at particular nodes in the discretization (that can be located at cell
centers, cell edges, or cell nodes) implicitly, and the rest of the information related
to same or other variables at other nodes are handled explicitly. The point-wise
implicit terms are expanded in Taylor series with respect to the explicit version of
the same terms, at the same locations, resulting in a time marching method that is
similar to the explicit methods and, unlike the fully implicit methods, does not re-
quire implicit iterations. This new method shares the characteristics of the robust
implementation of explicit methods and the stability properties of the uncondition-
ally stable implicit methods. This method is specifically designed for slow transient
flow problems wherein, for efficiency, one would like to perform time integrations
with very large time steps. Researchers at the INL have found that the method can
be time inaccurate for fast transient problems, particularly with larger time steps.
Therefore, an appropriate solution strategy for a problem that evolves from a fast
to a slow transient would be to integrate the fast transient with a semi-implicit or
implicit nonlinear technique and then switch to this point implicit method as soon
as the time variation slows sufficiently. A major benefit of this strategy for nuclear
reactor applications will reveal itself when fast response coolant flow is coupled to
slow response heat conduction structures for a long duration, slow transient. In this
scenario, as a result of the stable nature of numerical solution techniques for heat
conduction one can time integrate the heat part with very large (implicit) time steps.

Because it is the only integration/solution approach currenly implemented in RELAP-7,
only the JFNK method will be discussed subsequently in this report.
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2 Single-Phase Thermal Fluids Models

2.1 Flow Model

RELAP-7 treats the basic pipe, duct, or channel flow component as being one dimensional
with a cross-sectional area that varies along its length. In this section the instantaneous,
area-averaged balance equations are derived to approximate the flow physics. This deriva-
tion will begin with a three dimensional local (point-wise), instantaneous statement of the
balance equations. For economy of derivation these local balance equations are repre-
sented in generic form. The area-averaged balance equations will then be derived from
this local generic form, from which the specific area averaged mass, momentum, energy,
and entropy equations will be given.

A local generic transport equation can be stated as

∂

∂t
(ρψ) +∇ · (ρψu) +∇ · J − ρφ = 0 (1)

where ρ is the local material mass density, u is the local material velocity, and ψ, J , and
φ are generic “place holder” variables that can take on different meanings to represent
different physical balance equations. To represent balance of mass, momentum, energy,
and entropy these generic variables take on the meaning of the variables shown in Table 1.
Notice that these variables can take on scalar, vector, or second order tensor character as
needed in the equation of interest. In particular, the symbol J is used to represent either a
vector or tensor, depending on the equation in question.

Table 1. Balance Equation Variable Definitions.

Balance Equation ψ J φ

mass 1 0 0
momentum u pI − τ g
total energy E q + pI · u− τ · u g · u+ r

ρ

entropy s 1
T
q 1

ρ
∆

It is assumed that an instantaneous section of the variable duct can be represented as
shown in Figure 1. It is necessary to introduce specific forms of the Leibnitz and Gauss
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Figure 1. Diagram showing the variable-area duct used in the
derivation of the governing equations.

rules, or theorems, from advanced calculus that are specialized to the specific geometry of
Figure 1. These rules will be used as tools to shorten the derivations. First, the “Leibnitz
Rule” states:

∂

∂t

∫
A(x,t)

f(x, y, z, t) dA =

∫
A(x,t)

∂f

∂t
dA+

∫
c(x,t)

fuw · n̂ ds (2)

where

ds ≡ dc
n̂ · n̂c

(3)

and uw is the velocity of the (possibly) moving wall. Next, the “Gauss Theorem” is given
by ∫

A(x,t)

∇ ·B dA =
∂

∂x

∫
A(x,t)

B · n̂x dA+

∫
c(x,t)

B · n̂ ds (4)
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For brevity, in the following derivations we shall suppress the explicit dependence
on (x, t) of the area A and boundary c in the relevant integrals. Integrating the local,
instantaneous relation (1) over A, gives∫

A

∂

∂t
(ρψ) dA+

∫
A

∇ · ρψu dA+

∫
A

∇ · J dA−
∫
A

ρφ dA = 0. (5)

Applying the the Leibnitz and Gauss rules listed above to this equation results in

∂

∂t
A〈ρψ〉A +

∂

∂x
A〈ρψu · n̂x〉A +

∂

∂x
A〈J · n̂x〉A−A〈ρφ〉A = −

∫
c

(ṁψ+J · n̂) ds (6)

where

〈f〉A ≡
1

A

∫
A

f(x, y, z, t) dA (7)

ṁ ≡ ρ(u− uw) · n̂. (8)

Finally, because the walls are impermeable and u · n̂|c = uw · n̂|c, Equation (6) reduces to

∂

∂t
A〈ρψ〉A +

∂

∂x
A〈ρψu · n̂x〉A +

∂

∂x
A〈J · n̂x〉A − A〈ρφ〉A = −

∫
c

J · n̂ ds. (9)

This is the instantaneous, area-averaged generic balance equation.

2.1.1 Field Equations

To obtain mass, momentum, energy, and entropy forms, the variables from Table 1 are
substituted into the instantaneous, area-averaged generic balance equation to produce the
respective balance equations. The conservation of mass equation is given by:

∂

∂t
A〈ρ〉A +

∂

∂x
A〈ρu〉A = 0 (10)

where u = u · n̂x is the x-component of velocity. The momentum balance equation is:

∂

∂t
A〈ρu〉A +

∂

∂x
A〈ρuu〉A − A〈ρg〉A

+
∂

∂x
A〈pn̂x − τ · n̂x〉A =

∫
c

(−pI · n̂+ τ · n̂) ds (11)
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where I is the identity tensor. To reduce this equation further, note that

∂A

∂x
= −

∫
c

n̂ · n̂x ds (12)

Now take the projection of the momentum equation along the duct axis, i.e. take the scalar
product of this equation with n̂x, and use identity (12) to get the final version of the
instantaneous, area averaged momentum balance equation

∂

∂t
A〈ρu〉A +

∂

∂x
A〈ρu2〉A +

∂

∂x
A〈p〉A −

∂

∂x
A〈(τ · n̂x) · n̂x〉A

= p̃
∂A

∂x
+ A〈ρgx〉A +

∫
c

(τ · n̂) · n̂x ds (13)

where gx is the component of gravity along the duct axis and p̃ is the average pressure
around curve c on the wall, which can generally differ from 〈p〉A. Here the term which
accounts for deviations of the wall pressure from this mean wall pressure has been ne-
glected, i.e. the local wall pressure has been assumed constant along c giving p̃(x, t); the
deviatoric term could be included if a higher order approximation is warranted. In the past,
the average wall pressure has typically been assumed equal to the area averaged pressure,
i.e. p̃(x, t) = 〈p〉A. More will be said of this later. The total energy conservation equation
is

∂

∂t
A〈ρE〉A +

∂

∂x
A〈ρEu · n̂x〉A +

∂

∂x
A〈(q + pI · u− τ · u) · n̂x〉A − A〈ρg · u〉A

− A
〈
ρ
r

ρ

〉
A

= −
∫
c

(q + pI · u− τ · u) · n̂ ds (14)

or, as is typically done, by assuming the shear stress terms are small enough to be neglected
in the total energy equation

∂

∂t
A〈ρE〉A +

∂

∂x
A〈ρEu〉A +

∂

∂x
A〈qx + pu〉A − A〈ρg · u〉A − A〈r〉A

= −
∫
c

pu · n̂ ds−
∫
c

q · n̂ ds (15)

where E = e + u·u
2

is the specific total energy and e is the specific internal energy. This
equation can be reduced further by noting the identity

∂A

∂t
=

∫
c

uw · n̂ ds (16)
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Again, because u · n̂|c = uw · n̂|c, the identity (16) allows the energy equation to be finally
written as

∂

∂t
A〈ρE〉A +

∂

∂x
A〈ρEu〉A +

∂

∂x
A〈qx + pu〉A − A〈ρg · u〉A − A〈r〉A

= −p̃∂A
∂t
−
∫
c

q · n̂ ds (17)

where the last term on the right hand side is the net heat transfer from the fluid to the duct
wall. The entropy inequality relation is next written as an equality (an entropy production
equation) as:

∂

∂t
A〈ρs〉A +

∂

∂x
A〈ρsu〉A +

∂

∂x
A
〈qx
T

〉
A
− A〈∆〉A = −

∫
c

q

T
· n̂ ds (18)

where the last term on the right hand side is the entropy flux due to heat transfer to the duct
wall and ∆ is the entropy production per unit volume due to the process being irreversible.

With this form of the balance equations a closure equation will need to be supplied
describing how the local cross-sectional area will change, both spatially and temporally,
e.g. stretching or expanding due to pressure. Also, the usual assumption is made (though
not necessarily accurate) that the covariance terms of the averaging process are negligible,
i.e. if f = 〈f〉A + f ′ and g = 〈g〉A + g′ then

〈fg〉A = 〈f〉A〈g〉A + 〈f ′g′〉A︸ ︷︷ ︸
=0

= 〈f〉A〈g〉A, (19)

wherein the notational simplification 〈f〉A ⇒ f can be utilized. With this assumption the
mass, momentum, total energy, and entropy balances can be respectively written as

∂ρA

∂t
+
∂ρuA

∂x
= 0 (20)

∂ρuA

∂t
+
∂ (ρu2A+ pA)

∂x
= p̃

∂A

∂x
− F friction

wall − F form (21)

∂ρEA

∂t
+
∂(ρE + p)uA

∂x
= −p̃∂A

∂t
+Qwall (22)

∂ρsA

∂t
+
∂ρsuA

∂x
+

∂

∂x

(
qxA

T

)
− A∆ =

Qwall

T̃
(23)

where the F friction
wall is the average duct wall shear force (friction) per unit length, F form is the

form loss force per unit length, Qwall is the linear heat transfer rate ([W/m]) from the duct
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wall to the fluid and T̃ is the average fluid temperature along the line c on the duct wall.
Also note that in writing the momentum equation (21) the last term on the left hand side
of the momentum equation (13) has been neglected as being insignificant. Of course, if
the duct wall is rigid, the cross-sectional area is not a function of time and is a function of
spatial position only; i.e. A = A(x) only, and ∂A

∂t
= 0.

2.2 Constitutive Models

2.2.1 Wall Friction Factor Model

The Fanning friction factor fFanning is defined as the ratio of shear stress to kinetic energy
density:

fFanning =
τ

1
2
ρu2

, (24)

and the Darcy-Weisbach friction factor is related to the Fanning friction factor as follows:

fDarcy = 4fFanning . (25)

Multiplying the shear stress by the surface area S gives the shear force due to friction.
Also consider the definition of hydraulic diameter:

dh =
4A

Pwet
, (26)

where Pwet is the “wetted perimeter”, i.e., the perimeter of the flow channel in contact with
the fluid. Then, noting that the surface area can be related as S = PwetL, the friction force
per unit length can be expressed as the following, where for the remainder of this section,
f represents the Darcy friction factor:

F friction
wall =

f

2dh
ρu |u|A . (27)

Because of its dependencies, f is usually a function of x, along with the other flow vari-
ables. Furthermore, in the case of a variable-area duct or pipe, both the cross-sectional
area and the wetted perimeter are functions of x, and therefore dh is also a function of
x. In the particular case of a pipe with circular cross section and radius r(x), we have
A = πr2, Pwet = 2πr, and consequently

dh = 2r(x) = 2

√
A

π
(28)
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so that (27) becomes

F friction
wall =

f

4
ρu |u|

√
πA (29)

This relationship simply states that the wall shear force due to the fluid flow is proportional
to the bulk kinetic energy of the flow.

Currently, the same wall friction factor model is used for single-phase flow as that used
in RELAP5 [23]. The friction factor model is simply an interpolation scheme linking the
laminar, laminar-turbulent transition, and turbulent flow regimes. The wall friction model
consists of four regions which are based on the Reynolds number (Re):

1. f = fmax for 0 ≤ Re < 64.

2. Laminar flow for 64 ≤ Re < 2200.

3. Transitional flow for 2200 ≤ Re < 3000.

4. Turbulent flow for Re ≥ 3000.

where Re is defined as

Re =
ρ|u|dh
µ

(30)

where µ is the fluid viscosity, which in general depends on the fluid temperature. The
laminar friction factor depends on the cross-sectional shape of the channel and assumes
steady state and fully-developed flow (and a variety of other assumptions). It is defined as

f =
64

ReΦS

, 64 ≤ Re < 2200 (31)

where ΦS is a user-defined shape factor for noncircular flow channels, and has a value
of 1 for circular pipes. For the transition from laminar to turbulent flow, a reciprocal
interpolation method is employed. This choice is motivated by the form of (31), and is
valid over the region Remin ≡ 2200 ≤ Re ≤ Remax ≡ 3000. Solving for the parameter N
in the relation

N

Remin
− N

Remax
= 1 (32)

yields

N =
RemaxRemin

Remax −Remin
. (33)
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The reciprocal weighting function w is then defined as

w =
N

Remin
− N

Re
(34)

and varies from 0 to 1 as the Reynolds number varies from Remin to Remax. Finally, the
transition friction factor formula is defined as

f = (1− w)flam,Remin + wfturb,Remax . (35)

Formula (35) is valid for 2200 ≤ Re ≤ 3000, flam,Remin is the laminar friction factor at
Remin, and fturb,Remax is the turbulent friction factor atRemax. The turbulent friction factor is
given by a Zigrang-Sylvester approximation [24] to the Colebrook-White correlation [25],
for Re ≥ 3000:

1√
f

= −2 log10

{
ε

3.7D
+

2.51

Re

[
1.14− 2 log10

(
ε

D
+

21.25

Re0.9

)]}
(36)

where ε is the surface roughness, D is the pipe diameter, and the factor 1.14 corrects the
value of 1.114 present in the original document.

2.2.2 Distributed Form Loss Model

Form losses, such as those those arising from flow obstructions or pipe bends, can be
accounted for using the concept of a loss coefficient K, which is the fraction of dynamic
pressure head that is lost due to a flow feature i:

(∆p)i = Ki

(
1

2
ρu2

)
i

. (37)

Suppose a pipe/channel segment has a known form pressure loss over its length L but that
the point-wise form losses are not known. In this case, it is useful to use a linear form loss
coefficient K ′, meaning a form loss coefficient per unit length:

∆p =

L∫
0

K ′
(

1

2
ρu2

)
dx , (38)

where in general K ′ can be a function of space, though without knowing spatial loss
information, one may assume a uniform form loss distribution:

K ′ =
K

L
. (39)
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The resulting linear force expression can then be expressed similarly to that of the friction
factor:

F form = K ′
(

1

2
ρu |u|

)
A . (40)

2.2.3 Convective Heat Transfer Model

The general form of the convective heat transfer term in (22) is

Qwall = Hwaw (Twall − T )A (41)

where aw is the so-called heat transfer area density, Hw is the convective wall heat transfer
coefficient, Twall = Twall(x, t) is the average temperature around perimeter c(x, t), and
T = T (x, t) is the area average bulk temperature of the fluid for cross-section at (x, t). In
the constant-area case, the heat transfer area density is roughly defined as:

aw ≡ lim
∆x→0

wetted area of pipe section of length ∆x

volume of pipe section of length ∆x
(42)

For a constant-area pipe with radius r and circular cross-section, formula (42) yields

aw = lim
∆x→0

2πr∆x

πr2∆x
=

2

r
(43)

For a variable-area duct or pipe, if we consider the “projected area” through which heat
transfer can occur, we observe that the rate of change of the pipe’s area, ∂A

∂x
, also plays a

role (though it may be neglected). If we wish to account for the rate of change of the pipe’s
area, in (41) we can set

awA∆x ≡ “projected area of a pipe segment of length ∆x” (44)

and then take the limit as ∆x → 0. The right-hand side of (44) of course depends on the
geometric shape of the pipe cross section. For a circular pipe with cross sectional area
A(x) and associated radius r(x), the formula for the lateral surface area of a right-circular
frustum of height ∆x implies that (44) can be written as:

awA∆x = π

(
2r +

∂r

∂x
∆x

)
∆x

√
1 +

(
∂r

∂x

)2

(45)
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In the limit as ∆x→ 0, we obtain

awA = 2πr

√
1 +

(
∂r

∂x

)2

=

√
4πA+

(
∂A

∂x

)2

(46)

where (46) arises upon substitution of the cross-sectional area formula for a circle. Note
also that we recover

awA = 2πr (47)

from (46) in the constant area case. The resulting wall heating term in this case is

Qwall = Hw (T − Twall)

[
4πA+

(
∂A

∂x

)2
] 1

2

(48)

Clearly, pipes with rapidly changing cross-sectional area, i.e. ∂A
∂x
� 1, have a larger pro-

jected area than pipes with slowly-varying cross-sectional areas. Conversely, if the area is
not changing rapidly with x, this additional term can safely be neglected.

It is possible to derive an analogous formula to (46) for polygonal cross sections other
than circles. For example, for a square cross section with side length L(x), the analog
of (45) is

awA∆x = 2

(
2L+

∂L

∂x
∆x

)
∆x

√
1 +

1

4

(
∂L

∂x

)2

(49)

which, as ∆x→ 0 yields,

awA = 4L

√
1 +

1

4

(
∂L

∂x

)2

=

√
16A+

(
∂A

∂x

)2

(50)

where we have used the relations A(x) = L2(x), ∂A
∂x

= 2L∂L
∂x

.

Currently, the same wall heat transfer model for single-phase flow is used as in RE-
LAP5 [26]. The convective heat transfer coefficient is determined by many factors, i.e.,
hydraulic geometry, fluid types, and several Buckingham π-group dimensionless num-
bers. For single-phase, different flow regimes can be involved, including laminar forced
convection, turbulent forced convection, and natural convection. For the current version,
all the heat transfer models are based on steady-state and fully-developed flow assump-
tions. These assumptions may become questionable, for example, in a short pipe with
strong entrance effect. Effects that account for flow regions which are not fully developed
will be added in the future.
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2.2.3.1 Internal Pipe Flow For internal pipe flow, (the default geometry) the maxi-
mum of the forced-turbulent, forced-laminar, and free-convection coefficients is used for
non-liquid metal fluids in order to avoid discontinuities in the heat transfer coefficient.
The forced laminar heat convection model is an exact solution for fully-developed laminar
flow in a circular tube with a uniform wall heat flux and constant thermal properties. The
laminar Nusselt number (Nu) is here defined to be

Nu =
Hwdh
k

= 4.36 (51)

where k is the fluid thermal conductivity, based on fluid bulk temperature. The turbulent
forced convection model is based on the Dittus-Boelter correlation

Nu = CRe0.8Prn (52)

where C = 0.023, Pr is the Prandtl Number, n = 0.4 for heating, and n = 0.3 for cooling.
The applicable ranges and accuracy of the correlation are discussed in Section 4.2.3.1.1
of [26]. The Churchill and Chu Nu-correlation,

Nu =

0.825 +
0.387Ra

1
6(

1 +
(

0.492
Pr

) 9
16

) 8
27


2

(53)

is used for free convection along a vertical flat plate, where Ra = GrPr is the Rayleigh
number. The Grashof number Gr is defined as

Gr =
ρ2gβ(Tw − T )L3

µ2
(54)

where β is the coefficient of thermal expansion andL is the natural convection length scale.
The default natural convection length scale is the heat transfer hydraulic diameter. For
liquid metal fluids (with Pr < 0.1), the following correlation is used for all the convective
heat transfer regimes:

Nu = 5.0 + 0.025Pe0.8 (55)

where Pe = RePr is the Peclet number.

2.2.3.2 Vertical Bundles with In-line Rods, Parallel Flow Only The correlations for
vertical bundles with in-line rods and parallel flow differs from the default internal pipe
flow only in the implementation of the turbulent flow multiplier of Inayatov [27], which
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is based on the rod pitch to rod diameter ratio. The pitch is the distance between the
centers of the the adjacent rods. If the bundle consists of in-line tubes on a square pitch or
staggered tubes on an equilateral triangle pitch, the coefficient C in (52) becomes

C = 0.023
P

D
(56)

where P is the pitch and D is the rod diameter. As in RELAP5, if P
D
> 1.6, then P

D
is

reset to 1.6. If P
D

is not provided, or is less than 1.1, a default value of 1.1 is used. For
liquid metals (with Pr < 0.1), the following correlation is used for all the convective heat
transfer regimes in vertical bundles

Nu = 4.0 + 0.33

(
P

D

)3.8(
Pe

100

)0.86

+ 0.16

(
P

D

)5

. (57)

Equation (57) is valid for 1.1 < P
D
< 1.4. If P

D
is outside this range, it is “clipped” to

either the maximum or minimum value.

2.2.4 Equations of State

In the following sections, we discuss several equations of state employed for the various
thermal-fluid models used in RELAP-7. When we say “equation of state,” we really mean
a so-called “incomplete” equation of state defined by a pair of equations

p = p(ρ, e) (58)
T = T (ρ, e) (59)

i.e., both the pressure and the temperature can be computed if the density and internal
energy are given. Reformulations of (58) and (59) which consist of two equations relating
the four quantities p, T , ρ, and e are also acceptable and useful in practice.

The pair of equations (58) and (59) may be contrasted with the case of a single ther-
modynamically consistent “complete” equation of state e = e(ϑ, s) where ϑ = 1/ρ is the
specific volume, and s is the specific entropy. Note that the existence of a complete equa-
tion of state implies the existence of an incomplete equation of state through the relations
p = −

(
∂e
∂ϑ

)
s
, and T =

(
∂e
∂s

)
ϑ
, but the converse is not true [28]. The partial derivative

notation
(
∂f
∂x

)
y

is used to denote the fact that f = f(x, y) and the derivative is taken with
respect to x while holding y constant. Solution of the Euler equations requires only an in-
complete equation of state (for smooth flows), hence we focus on the form (58)–(59) in the
present work. More will be said subsequently, when discussing selection and stabilization
of ”weak” solutions.
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2.2.4.1 Barotropic Equation of State The barotropic equation of state is suitable for a
two-equation (isothermal) fluid model. It describes only isentropic (reversible) processes,
and implies a constant sound speed. Shocks do not form from initially smooth data in
fluids modeled with the barotropic equation of state; discontinuities present in the initial
data may be retained and propagated without “sharpening or steepening”. This equation
of state, described here only for reference because it is used in RELAP-7 primarily for
testing and verification purposes, is given by

p = p0 + a2(ρ− ρ0)

= p0 + a2(U0 − ρ0) (60)

where a is a constant, roughly the sound speed. The derivatives of p with respect to the
conserved variables are

p,0 = a2 (61)
p,1 = 0 (62)
p,2 = 0 (63)

2.2.4.2 Isentropic Stiffened Gas Equation of State The isentropic stiffened gas equa-
tion of state is more general than the barotropic equation of state. In this equation of state,
the pressure and density are related by:

p+ p∞
p0 + p∞

=

(
ρ

ρ0

)γ
(64)

which is sometimes rearranged to read:

p = (p0 + p∞)

(
ρ

ρ0

)γ
− p∞ (65)

where p∞, γ, and ρ0 are constants which depend on the fluid. Representative values for
water are p∞ = 3.3 × 108 Pa, γ = 7.15, ρ0 = 103 kg/m3. Note that although the symbol
γ is used in (65), it should not be confused with the ratio of specific heats (the ratio of
specific heats is approximately 1 for most liquids). The isentropic equation of state is, of
course, not valid for flows with shocks, but for weak pressure waves and weak shocks the
approximation is not bad. The speed of sound in this fluid can be computed as

c2 =
∂p

∂ρ
=
γ

ρ
(p+ p∞) (66)
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Hence, unlike the barotropic equation of state, the sound speed of this model varies with
the density and pressure values. In terms of conserved variables, we have:

p = (p0 + p∞)

(
U0

ρ0

)γ
− p∞ (67)

with derivatives

p,0 =
γ

U0

(p+ p∞) = c2 (68)

p,1 = 0 (69)
p,2 = 0 (70)

Finally, we note that Courant and Friedrichs [29] also discuss this equation of state in the
form

p = A

(
ρ

ρ0

)γ
−B (71)

Approximate values for the constants in (71) are given in Table 2.

Table 2. Constants for Courant and Friedrich’s form of the isen-
tropic stiffened gas equation of state.

SI Imperial

ρ0 999.8 kg/m3 1.94 slug/ft3

γ 7
A 3.04076× 108 Pa 3001 atm
B 3.03975× 108 Pa 3000 atm

2.2.4.3 Linear Equation of State A more general “linear” equation of state (a straight-
forward extension of (60)) which takes into account variations in temperature as well as
density, is given by

p = p0 +Kρ(ρ− ρ0) +KT (T − T0) (72)
e = e0 + cv(T − T0). (73)
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Since Kρ ≡
(
∂p
∂ρ

)
T

and KT ≡
(
∂p
∂T

)
ρ

(evaluated at p0) are large for liquids (like water),
we see that large changes in pressure are required to produce changes in density, assuming
T is approximately constant. This observation is in accordance with what we expect for
a nearly incompressible fluid. If the working fluid is water, representative values for the
constants in (72) and (73) are given in Tables 3 (p0 = 1 MPa) and 4 (p0 = 5 MPa) for
several temperatures. The tables demonstrate that the various constants are not strongly
dependent on the absolute magnitude of the pressure. These constants are obtained from
the thermodynamic data for water available on the NIST website1.

In terms of conserved variables, (72) and (73) can be written as

p = p0 +Kρ(U0 − ρ0) +
KT

cv

(
U2

U0

− U2
1

2U2
0

− e0

)
(74)

T = T0 +
1

cv

(
U2

U0

− U2
1

2U2
0

− e0

)
, (75)

and the derivatives of p with respect to the conserved variables are

p,0 = Kρ +
KT

cvU0

(
U2

1

U2
0

− U2

U0

)
= Kρ +

KT

cvρ

(
u2 − E

)
(76)

p,1 = −KTU1

cvU2
0

= −KTu

cvρ
(77)

p,2 =
KT

cvU0

=
KT

cvρ
. (78)

The derivatives of T with respect to the conserved variables are

T,0 =
1

cvU0

(
U2

1

U2
0

− U2

U0

)
=

1

cvρ

(
u2 − E

)
(79)

T,1 = − U1

cvU2
0

= − u

cvρ
(80)

T,2 =
1

cvU0

=
1

cvρ
. (81)

For completeness, the density is given as a function of pressure and temperature, and the

1http://webbook.nist.gov/chemistry/fluid
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temperature as a function of pressure and density, for the linear equation of state:

ρ = ρ0 +
p− p0

Kρ

− KT

Kρ

(T − T0) (82)

T = T0 +
p− p0

KT

− Kρ

KT

(ρ− ρ0) . (83)

Table 3. Constants for the linear equation of state for p0 = 1 MPa
and T0 = 375, 400, 425, and 450K.

T = 375K

p0 106 Pa
Kρ 2.1202× 106 Pa-m3/kg
ρ0 957.43 kg/m3

KT 1.5394× 106 Pa/K
T0 375 K
cv 4.22× 103 J/kg-K
e0 4.27× 105 J/kg

T = 400K

p0 106 Pa
Kρ 1.9474× 106 Pa-m3/kg
ρ0 937.87 kg/m3

KT 1.6497× 106 Pa/K
T0 400 K
cv 4.22× 103 J/kg-K
e0 5.32× 105 J/kg

T = 425K

p0 106 Pa
Kρ 1.7702× 106 Pa-m3/kg
ρ0 915.56 kg/m3

KT 1.6643× 106 Pa/K
T0 425 K
cv 4.22× 103 J/kg-K
e0 6.39× 105 J/kg

T = 450K

p0 106 Pa
Kρ 1.5552× 106 Pa-m3/kg
ρ0 890.39 kg/m3

KT 1.6303× 106 Pa/K
T0 450 K
cv 4.22× 103 J/kg-K
e0 7.48× 105 J/kg

2.2.4.4 Stiffened Gas Equation of State In the single-phase model discussed in this
section, the fluid (whether it be liquid or vapor) is compressible and behaves with its own
convex equation of state (EOS). For initial development purposes it was decided to use a
simple form capable of capturing the essential physics. For this purpose, the stiffened gas
equation of state (SGEOS) was selected (LeMetayer et al. [4])

p(ρ, e) = (γ − 1)ρ(e− q)− γp∞ (84)
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Table 4. Constants for the linear equation of state for p0 = 5 MPa
and T0 = 375, 400, 425, and 450K.

T = 375K

p0 5× 106 Pa
Kρ 2.1202× 106 Pa-m3/kg
ρ0 959.31 kg/m3

KT 1.5559× 106 Pa/K
T0 375 K
cv 4.26× 103 J/kg-K
e0 4.25× 105 J/kg

T = 400K

p0 5× 106 Pa
Kρ 1.9474× 106 Pa-m3/kg
ρ0 939.91 kg/m3

KT 1.6406× 106 Pa/K
T0 400 K
cv 4.26× 103 J/kg-K
e0 5.31× 105 J/kg

T = 425K

p0 5× 106 Pa
Kρ 1.7702× 106 Pa-m3/kg
ρ0 917.83 kg/m3

KT 1.6659× 106 Pa/K
T0 425 K
cv 4.26× 103 J/kg-K
e0 6.37× 105 J/kg

T = 450K

p0 5× 106 Pa
Kρ 1.5552× 106 Pa-m3/kg
ρ0 892.99 kg/m3

KT 1.6370× 106 Pa/K
T0 450 K
cv 4.26× 103 J/kg-K
e0 7.46× 105 J/kg

where p, ρ, e, and q are the pressure, density, internal energy, and the binding energy
of the fluid considered. The parameters γ, q, and p∞ are the constants (coefficients) of
each fluid. The parameter q defines the zero point for the internal energy, which will be
relevant later when phase transitions are involved with two-phase flows. The parameter
p∞ gives the “stiffened” properties compared to ideal gases, with a large value implying
“nearly-incompressible” behavior.

The first term on the right-hand side of (84) is a repulsive effect that is present for any
state (gas, liquid, or solid), and is due to molecular motions and vibrations. The second
term on the right represents the attractive molecular effect that guarantees the cohesion
of matter in the liquid or solid phases. The parameters used in this equation of state
are determined by using a reference curve, usually in the

(
p, 1

ρ

)
plane. In LeMetayer et

al. [4], the saturation curves are utilized as this reference curve to determine the stiffened
gas parameters for liquid and vapor phases. The SGEOS is the simplest prototype that
contains the main physical properties of pure fluids — repulsive and attractive molecular
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effects — thereby facilitating the handling of the essential physics and thermodynamics
with a simple analytical formulation. Thus, a fluid, whether liquid or vapor, has its own
thermodynamics.

The pressure law, equation (84), is incomplete. A caloric law is also needed to relate
the fluid temperature to the other fluid properties (for example, T = T (p, ρ)) and thereby
completely describe the thermodynamic state of the fluid. For the fluid, whether liquid or
vapor, it is assumed that the thermodynamic state is determined by the SGEOS as:

e(p, ρ) =
p+ γp∞
(γ − 1)ρ

+ q (85)

ρ(p, T ) =
p+ p∞

(γ − 1)cvT
(86)

h(T ) = γ cvT + q (87)

g(p, T ) = (γcv − q′)T − cvT ln
T γ

(p+ p∞)(γ−1)
+ q (88)

where T , h, and g are the temperature, enthalpy, and Gibbs free enthalpy, respectively,
of the fluid considered. In this system, equation (86) is the caloric law. In addition to
the three material constants mentioned above, two additional material constants have been
introduced, the constant volume specific heat cv and the parameter q′. These parameters
will be useful when two-phase flows are considered later. The values for water and its
vapor from [4] are given in Table 5. These parameter values appear to yield reasonable
approximations over a temperature range from 298 to 473 K [4]. Equation (87) can also

Table 5. Stiffened gas equation of state parameters for water and
its vapor, from [4].

Water γ q (J kg−1) q′ (J kg−1 K−1) p∞ (Pa) cv (J kg−1 K−1)

Liquid 2.35 −1167× 103 0 109 1816
Vapor 1.43 2030× 103 −23× 103 0 1040

be written as
h = cp T + q (89)

if we define cp = γcv. Combining (85) and (86) also allows us to write the temperature as

T =
1

cv

(
e− q − p∞

ρ

)
. (90)
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In terms of conserved variables, the pressure is given by

p = (γ − 1)

(
U2 −

U2
1

2U0

− U0q

)
− γp∞. (91)

The derivatives of p with respect to the conserved variables are

p,0 = (γ − 1)

(
1

2

U2
1

U2
0

− q
)

= (γ − 1)

(
1

2
u2 − q

)
(92)

p,1 = (γ − 1)

(
−U1

U0

)
= (γ − 1) (−u) (93)

p,2 = γ − 1. (94)

In terms of conserved variables, the temperature is given by

T =
1

cv

(
U2

U0

− U2
1

2U2
0

− q − p∞
U0

)
. (95)

The derivatives of T with respect to the conserved variables are

T,0 =
1

cvU2
0

(
p∞ +

U2
1

U0

− U2

)
=

1

cvρ2

(
p∞ + ρu2 − ρE

)
(96)

T,1 = − U1

cvU2
0

= − u

cvρ
(97)

T,2 =
1

cvU0

=
1

cvρ
. (98)

The sound speed for this equation of state can be computed as

c2 =
p

ρ2
(γ − 1)ρ+ (γ − 1)(e− q)

= γ

(
p+ p∞
ρ

)
. (99)

2.2.4.5 Ideal Gas Equation of State The ideal gas equation of state is fundamental;
many other equations of state are more-or-less based on the ideal gas equation of state in
some way. Although RELAP-7 is primarily concerned with flows involving liquids and
their vapors, there are certainly nuclear reactor applications, such as helium cooling, where
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the ideal gas equation of state is relevant. The pressure and temperature in a (calorically-
perfect) ideal gas are given by

p = (γ − 1)ρe (100)

T =
e

cv
(101)

where γ = cp
cv

is the ratio of specific heats, and cv is the specific heat at constant volume,
which in a calorically-perfect gas is assumed to be constant. This equation of state is a
particular form of the stiffened gas equation of state already described in Section 2.2.4.4,
with q = p∞ = 0. We therefore omit giving a detailed listing of the derivatives of this
equation of state with respect to the conserved variables. The reader should instead refer
to Section 2.2.4.4, and the derivatives listed therein.

3 Two-Phase Thermal Fluids Models

3.1 Flow Model

Many important fluid flows involve a combination of two or more materials or phases
having different properties. For example, in light water nuclear reactor safety and opti-
mization there are key issues that rely on in-depth understanding of basic two-phase flow
phenomena with heat and mass transfer. Within the context of these multiphase flows, two
bubble-dynamic phenomena: boiling (heterogeneous) and flashing or cavitation (homoge-
neous boiling), with bubble collapse, are technologically very important to nuclear reactor
systems. The main difference between boiling and flashing is that bubble growth (and
collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas
bubble growth (and collapse) in flashing is limited primarily by inertial effects in the sur-
rounding liquid. The flashing process tends to be far more explosive (and implosive),
and is more violent and damaging (at least in the near term) than the bubble dynamics of
boiling. However, other problematic phenomena, such as crud deposition, appear to be
intimately connected with the boiling process. In reality, these two processes share many
details, and often occur together.

The multiple phases or components often exhibit relative motion among the phases or
material classes. The microscopic motions of the individual constituents are complex and
the detailed solution to the micro-level evolutionary equations is very difficult. Character-
istic of such flows of multi-component materials is an uncertainty in the exact locations
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of the particular constituents at any particular time. For most practical purposes, it is not
possible to exactly predict or measure the evolution of the details of such systems, nor is it
even necessary or desirable. Usually, more gross features of the motion, or the “average”
behavior of the system are of greater interest. Here we present descriptive equations that
will predict the evolution of this averaged behavior. Due to the complexities of interfaces
and resultant discontinuities in fluid properties, as well as from physical scaling issues, it is
essential to work with averaged quantities and parameters. The rational approach pursued
here to examine two-phase flow must be based on the fundamental postulates of contin-
uum mechanics and upon careful use of averaging procedures. We begin by rigorously
specifying our concept of an average. There are several types of averaging. The published
literature predominantly contains two types of averaging: “volume averaging” [30,31] and
“time averaging” [32]. Occasionally variants, such as the “area averaging” described in the
single-phase flow section above for one-dimensional variable cross-sectional area, or com-
binations of the two, such as “volume-time averaging,” are used. However, a more general
approach (least restrictions) will be utilized here, adopting what is known as “ensemble
averaging.” The equation forms that result from these different averaging approaches can
appear quite similar, though the physical/mathematical interpretation of the various terms
are certainly different and there are subtle differences in the inherent restrictions associated
with each.

When the physical system has a large amount of variability, a natural interpretation
of the meaning of predictions is in terms of expected values and variances. If there are
many different events, or “realizations,” possible, then the expected value is naturally an
“average” over all of these events, or the ensemble of realizations. The ensemble is then the
set of all experiments with the same boundary and initial conditions, with some properties
that we would like to associate with the mean and distribution of the components and
their velocities. A realization of the flow is a possible motion that could have happened.
Implicit in this concept is the intuitive idea of a “more likely” and a “less likely” realization
in the ensemble. Therefore, as we shall see, each ensemble of realizations, corresponding
to a given physical situation, has a probability measure on subsets of realizations. The
ensemble average is the generalization of the elementary idea of adding the values of the
variable for each realization, and dividing by the number of observations. The ensemble
average then allows the interpretation of phenomena in terms of repeatability of multi-
component flows.

One of the nice features of ensemble averaging, as opposed to volume averaging, is
that ensemble averaging does not require that a control volume contain a large quantity of
a particular component in any given realization. Consider the following example, taken
directly from Drew and Lahey [33], where the average of a particle-fluid mixture is of
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interest. Gas turbines are eroded by particulate matter (or droplets) suspended in the gas
stream passing through the inlet and impacting on the various parts of the machine, e.g. the
turbine blades. The trajectories of individual particles moving through the gas turbine are
very complicated, depending on where and when the particles enter the inlet of the device.
Such predictions are usually not required. A prediction, however, that is of interest to the
designer is the average, or expected values, of the particle flux (or the concentration and
velocities of particles) near parts in the device that are susceptible to erosion. Since the
local concentration of particles is proportional to the probability that particles will be at
the various points in the device at various times, and the particle velocity field will be
the mean velocity that the particles will have if they are at that position in the device, the
design engineer will be able to use this information to assess the places where erosion due
to particle impact may occur.

It may be that there are no times for which there will be many particles in some repre-
sentative control volume (or representative elementary volume, REV). So, volume averag-
ing, which depends on the concept of having many representative particles in the averag-
ing volume at any instant, will fail. The appropriateness of ensemble averaging is obvious.
Here the ensemble is the set of motions of a single particle through the device, given that
it started at a random point at the inlet at a random time during the transient flow through
the device. Clearly the solution for the average concentration and average velocity gives
little information about the behavior of a single particle in the device; however, the infor-
mation is very appropriate for assessing the probability of damage to the device. Similar
examples could be given where time averaging will fail, but where ensemble averaging
is again appropriate. The ensemble average is more fundamental than either time or vol-
ume averaging. In fact, both time and volume averaging can be viewed as approximations
to the ensemble average, which can be justified, respectively, for steady or homogeneous
flow [34].

3.1.1 Ensemble Averaging

A general method is presented here, based on the ensemble averaging concept [34–38]
for developing averaged balance or conservation equations for multiple materials, any one
of which may be at point x, at a given instant t. With this procedure, the most likely
state at a point, i.e. the expected value, will be determined simultaneously with which
material is most likely to be found at that point. Imagine running an experiment many
times and collecting data about the state of the flow at each point x and time t. This
information could include which material or phase is present, material density, velocity,
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pressure, temperature, concentration, etc. From this information, one can compute the
ensemble average. The ensemble average of a generic property Q0 of a fluid or material
in a process is an average over the realizations

〈Q0〉(x, t) =
1

NR

NR∑
r=1

Q0,r(x, t) (102)

where NR is the number of times the process or experiment is repeated, and is a large
number. Now imagine that many of the realizations are near duplicates, i.e. they are
essentially the same state, with N occurrences. We can then rewrite the sum over the
realizations as a sum over the number of states NR

〈Q0〉(x, t) =
1

NR

NR∑
r=1

N(x, t,Γ)Q0(Γ)

=

NΓ∑
r=1

N(x, t,Γ)

NR

Q0(Γ)

=

∫
all Γ

Q0(Γ)f(x, t,Γ) dΓ (103)

where f(x, t,Γ) = N(x,t,Γ)
NR

is the probability of the state Γ in the ensemble. Note that in
the limit of an infinite number of repetitions of the experiment, with a sum over all of the
states, the summation is replaced with an integral form in the definition of the ensemble
average. More correctly, because

∫
all Γ

f(x, t,Γ) dΓ = 1, f(x, t,Γ) is referred to as the
probability density.

The state is the full thermodynamic/kinematic description of the matter at a point x
and time t; for example, the set

Γ =

 ρ0,u0, h0, p0, τ0, . . .
ρ1

0,u
1
0, h

1
0, ρ

2
0,u

2
0, h

2
0, . . .

X1, X2, . . .

 (104)

where the various symbols used in (104) are described in Table 6, and

ρ0 =
∑
s

ρs0 (105)

ρ0u0 =
∑
s

ρs0u
s
0 (106)

ρ0h0 =
∑
s

ρs0h
s
0 . (107)
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Other properties may also appear in the above thermodynamic/kinematic state such as the
phase or material temperature, θ0, the phase or material specific internal energy, e0, and
the phase or material specific entropy, s0.

Table 6. State variable definitions.

Symbol Description

Xk(x, t) Phase or material indicator function: equal to 1 if material k is present, 0 otherwise
ρ0 Phase or material density
u0 Phase or material velocity
h0 Phase or material specific enthalpy
p0 Pressure
τ0 Deviatoric stress
ρs0 Species partial density
us0 Species velocity
hs0 Species partial enthalpy

In a typical multiphase flow, the ensemble averages of interest may include those listed
in Table 7. From a physical viewpoint, the bulk average density of a phase represents a
summation of all of the density values that occurred for that phase, divided by the total
number of experiments run. The bulk average density corresponds intuitively to the idea
of the mass of phase per unit volume of mixture, or the observed material density. On the
other hand, the intrinsic average density physically corresponds to a summation of all of
the density values that occurred for that phase, dividing by the number of times in which
that phase occurred in the experiments. The intrinsic average density corresponds intu-
itively to the idea of the mass of phase per unit volume of phase k , or the true material
density. Some researchers prefer to work with bulk average densities, e.g. Kashiwa and
Rauenzahn [35], while others prefer working with intrinsic densities, e.g. Drew and Pass-
man [34]. This is mostly an issue of convenience, since one can easily be converted to the
other. Here intrinsic averages will be used, and henceforth, when an average is mentioned,
mean intrinsic average will be implied unless indicated otherwise.
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Table 7. Multiphase flow ensemble averages of interest.

Ensemble Average Description

αk ≡ 〈Xk〉 Material k volume fraction
ρ̂k ≡ 〈Xkρ0〉 Material k bulk average density
ρk ≡ Xkρ0

αk
Material k intrinsic average density

ρ̂sk ≡ 〈Xkρ
s
0〉 Species s in material k bulk average density

ρsk ≡
Xkρ

s
0

αk
Species s in material k intrinsic average density

uk ≡ 〈Xkρ0u0〉
ρ̂k

= 〈Xkρ0u0〉
αkρk

Material k velocity
Ek ≡ 〈Xkρ0E0〉

ρ̂k
= 〈Xkρ0E0〉

αkρk
Material k total energy

sk ≡ 〈Xkρ0s0〉
ρ̂k

= 〈Xkρ0s0〉
αkρk

Material k entropy
T ≡ 〈T0〉 Mean mixture stress
Tk ≡ 〈XkT0〉

αk
Mean k-material stress

p ≡ 〈p0〉 Pressure (single pressure model)
pk ≡ 〈Xkp0〉

αk
Pressure in k-material

3.1.2 Field Equations

For a reasonably broad range of conditions (with common substances), the exact balance
equations, valid at a point inside each material, are

ρ̇0 = −ρ0∇ · u0 (108)
ρ̇s0 = −ρs0∇ · u0 −∇ · ρs0(us0 − u0) + ṙs0 (109)

ρ0u̇0 = ∇ · T0 + ρ0g (110)

ρ0Ė0 = ∇ · (T0 · u0) +∇ · q0 + ρ0g · u0 + ρ0ε0 (111)

ρ0ṡ0 >
ρ0ε0

θ0

−∇ ·
(
q0

θ0

)
. (112)

For these macroscopic balance laws the material derivative has been used, which is defined
as

Q̇0 ≡
∂Q0

∂t
+ u0 · ∇Q0 . (113)

Let the total variation of f in the phase space (x, t,Γ) be given by [35]

∂f

∂t
+ u0 · ∇f + Γ̇

∂f

∂Γ
=
df

dt
= 0 (114)
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where it is assumed that, as a material point is followed through phase space, its probability
of occurrence remains constant. Various moments of this equation can be formed by first
multiplying this equation by Q0, and then averaging this result. It can be shown (see also
Kashiwa and Rauenzahn [35], here corrected) that the resulting equation is

∂

∂t
〈Q0〉+∇ · 〈Q0u0〉 = 〈Q̇0 +Q0∇ · u0〉 . (115)

This result is called the moment evolution equation and the details of its derivation are
given in [14, 15]. The averaged balance or conservation equations are obtained by letting
the generic Q0 be replaced by various “meaningful” functions and then by performing
judicious manipulations on the equations to bring about physically useful forms of the
equation.

3.1.3 Mass Balance

Letting Q0 = Xkρ0 in (115) results in

∂ 〈Xkρ0〉
∂t

+∇ · 〈Xkρ0u0〉 =
〈
Ẋkρ0 +Xk(ρ̇0 + ρ0∇ · u0)

〉
. (116)

Introducing the pure material (microscopic) mass balance equation and the definition of
average into this equation gives

∂αkρk
∂t

+∇ · αkρkuk =
〈
Ẋkρ0

〉
. (117)

Because the time- and spatial-derivatives are being taken of functions that are not smooth,
this averaged mass balance equation is to be interpreted in the sense of distributions, or
generalized functions [39]. To examine the right hand side of this equation in more detail
the definition of the material derivative is first considered. It is defined by

Ẋk =
∂Xk

∂t
+ u0 · ∇Xk (118)

in a generalized function sense. By noting that for points not on the interface where either
Xk = 0 or Xk = 1 the partial derivatives both vanish, while for points on the interface
(which also move with the interface velocity) the function Xk is a jump that remains
constant so their material derivatives following the interface vanish, it is seen that the
material derivative of Xk following the interface vanishes,

∂Xk

∂t
+ uint · ∇Xk = 0 (119)
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where uint denotes the velocity of an interface of phase or material k. Thus,〈
Ẋkρ0

〉
= 〈ρ0(u0 − uint) · ∇Xk〉 (120)

and the averaged mass balance equation becomes

∂αkρk
∂t

+∇ · αkρkuk = 〈ρ0(u0 − uint) · ∇Xk〉

≡ Ωmass
k . (121)

Because∇Xk has the sifting property of the Dirac delta function(al), the only contributors
(on the right hand side) are the material interfaces. As shown in [40, 41], ∇Xk is aligned
with the surface unit normal vector pointing to phase k, ∇Xk = n̂kδ(x − xint, t). Thus
the Ωmass

k represents the flux of mass to phase k from the other phases via the interface,
usually just referred to as phase change. With no storage of mass at an interface, mass
balance requires further that

no. of phases∑
k=1

Ωmass
k = 0 . (122)

For later use, it is convenient to introduce the concept of interfacial area density of phase
or component k, defined as

Ak = −〈n̂k · ∇Xk〉 (123)

where n̂k is the unit exterior normal to phase or component k. Ak is the expected value
of the ratio of the interfacial area (in a small volume) to the (small) volume, in the limit as
that volume approaches zero.

3.1.4 Generic Balance Equation

To more expeditiously derive the other conservation equations, the averaged balance equa-
tion resulting from a generic, microscopic balance equation will be derived first. Then the
other balance equations can be found by judicious substitution of pertinent quantities into
the generic balance equation. Consider the generic, microscopic balance equation

∂ρ0ψ0

∂t
+∇ · ρ0ψ0u0 = ∇ · J0 + ρ0g0 (124)

or

ρ0ψ̇0 =
d(ρ0ψ0)

dt
+ (ρ0ψ0)∇ · u0 = ∇ · J0 + ρ0g0 . (125)

49



Equations (124) and (125) hold at each point where sufficient smoothness occurs for the
derivatives to be taken, otherwise at simple discontinuities its generic jump balance con-
dition

Jρ0ψ0(u0 − uint) + J0K · n̂ = m (126)

holds, where ψ0 is the conserved quantity, J0 is a molecular or diffusive flux, g0 is a source
density, and m is the interfacial source of ψ0. The notation J·K here denotes the jump
in the enclosed quantity across an interface. Obviously, these generic quantities must be
included in our state space, e.g.

Γ =

[
ρ0,u0, ψ0, J0, . . .
X1, X2, . . .

]
. (127)

Let us also define averages of these quantities as

ψk ≡
〈Xkρ0ψ0〉
αkρk

(128)

Jk ≡
〈XkJ0〉
αk

(129)

gk ≡
〈Xkρ0g0〉
αkρk

. (130)

Letting Q0 = Xkρ0ψ0 in (115) gives

∂〈Xkρ0ψ0〉
∂t

+∇ · 〈Xkρ0ψ0u0〉 = ∇ · 〈XkJ0〉+ 〈Xkρ0g0〉

+ 〈[ρ0ψ0(u0 − uint)− J0] · ∇Xk〉 . (131)

Introducing the fluctuating velocity

u′k ≡ u0 − uk (132)

into this expression finally results in

∂αkρkψk
∂t

+∇ · αkρkψkuk = ∇ · αkJk +∇ · αkJFluctk + αkρkgk

+ Ωmass
k ψintk + Ωψ

k

where JFluctk = − 〈Xkρ0ψ0u′k〉
αk

is the flux of ψ due to fluctuations in the phase k velocity,
ψintk is the effective value of ψ that is transferred to phase k from the other phases due
to mass transfer, or phase change, and Ωψ

k is a flux of ψ to phase k not due to bulk mass
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transfer from the other phase(s). This is the averaged generic balance equation. To obtain
balance at the interface, the generic jump balance equation requires the constraint

no. of phases∑
k=1

Ωmass
k ψintk + Ωψ

k = M (133)

where M = 〈m〉 is the expected net effect of all the interfacial ψ − source terms. With
this generic balance equation, the phasic species mass, momentum, and energy equations,
as well as the phasic entropy inequality, can readily be determined.

3.1.5 Species Mass Balance

The microscopic species mass balance equation can be written as

∂ρs0
∂t

+∇ · ρs0us0 = ṙs (134)

where ρs0 is the species partial density, us0 is the species bulk velocity, and ṙs is the genera-
tion or source of the species due to chemical reactions. The species mass balance equation
is not usually written this way because not much is usually known about individual species
velocities. Instead, it is usually cast as

∂ρs0
∂t

+∇ · ρs0u0 = ∇ · ρs0(u0 − us0) + ṙs (135)

because of the availability (to a certain extent) of acquired empirical knowledge of the
behavior of the first term on the right hand side of this equation (species diffusion). This
equation is in the form of the generic balance equation (124) with the assignments of

ψ0 =
ρs0
ρ0

, J0 = ρ0
ρs0
ρ0

(u0 − us0), g0 =
ṙs

ρ0

. (136)

Thus the averaged species mass balance equation takes the form

∂

∂t
〈Xkρ

s
0〉+∇ · 〈Xkρ

s
0u0〉 = ∇ · 〈Xkρ

s
0(u0 − us0)〉+ 〈Xkṙ

s〉

+ 〈[ρs0(u0 − uint)− ρs0(u0 − us0)] · ∇Xk〉 . (137)
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Again introducing the fluctuating velocity along with the definitions of averaged quanti-
ties, the final form of the averaged species mass balance equation is

∂αkρ
s
k

∂t
+∇ · αkρskuk = ∇ · 〈Xkρ

s
0(u0 − us0)〉

− ∇ · 〈Xkρ
s
0u
′
k〉

+ 〈ρs0(u0 − uint) · ∇Xk〉
− 〈ρs0(u0 − us0) · ∇Xk〉
+ Ṙs

k (138)

where the terms on the right-hand side of (138) are the relative species flux, fluctuational
diffusion, phase change, mass exchange, and average generation rate in phase k due to
chemical reactions, Ṙs

k ≡
〈Xk ṙs〉
αk

, respectively.

3.1.6 Momentum Balance

The averaged momentum balance equation results from the generic averaged balance
equation with the assignments of

ψ0 = u0, J0 = T0, g0 = g0 (139)

to give:

∂αkρkuk
∂t

+∇ · αkρkuk ⊗ uk = ∇ · αk(Tk + T Fluct
k ) + αkρkgk

+ Ωmom
k + uintk Ωmass

k (140)

where the fluctuating stress T Fluct
k and the interfacial momentum source Ωmom

k are given
by

T Fluct
k ≡ −〈Xkρ0u

′
k ⊗ u′k〉
αk

(141)

Ωmom
k ≡ −〈T0 · ∇Xk〉 . (142)

The averaged interfacial momentum balance constraint (jump condition) is

γ =

no. of phases∑
k=1

Ωmom
k + uintk Ωmass

k (143)

where γ is the interfacial momentum source, i.e. surface tension source.
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3.1.7 Energy Balance

The assignment of

ψ0 = E0 = e0 +
1

2
u0 · u0 (144)

J0 = T0 · u0 + q0 (145)
g0 = g0 · u0 + ε0 (146)

to the variables of the generic averaged balance equation give the averaged energy balance
equation

∂

∂t
αkρk

(
ek +

1

2
uk · uk + eFluctk

)
+∇ · αkρkuk

(
ek +

1

2
uk · uk + eFluctk

)
= ∇ · [αk(Tk + T Fluct

k ) · uk]
−∇ · αk(qk + qFluctk ) + αkρk(εk + gk · uk)

+ Ωenergy
k + Ωmom

k · uintk + Ωmass
k

(
eintk +

1

2
uintk · uintk

)
(147)

where

eFluctk ≡ 1

2

〈Xkρ0u
′
k · u′k〉

αkρk
(148)

is the fluctuation kinetic energy,

qFluctk ≡ 〈Xkρ0u
′
ke
′
k〉

αk
+
〈XkT0 · u′k〉

αk
+

1

2

〈Xkρ0u
′
k(u

′
k · u′k)〉

αk
(149)

is the fluctuation energy flux,

εk ≡
〈Xkρ0ε0〉
αkρk

(150)

is the energy source,

Ωenergy
k ≡ 〈q0 · ∇Xk〉 (151)

is the interfacial heat source, and

Ωmom
k · uintk ≡ −〈T0 · u0 · ∇Xk〉 (152)
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is the interfacial work term. The averaged interfacial energy balance constraint (interface
jump condition) is

no. of phases∑
k=1

Ωenergy
k + Ωmom

k · uintk + Ωmass
k

(
eintk +

1

2
uintk · uintk

)
= ξ (153)

where ξ is the interfacial energy source. The kinetic energy associated with the velocity
fluctuations, eFluctk , is a type of “turbulent” kinetic energy. Sometimes the sum ek + eFluctk

is interpreted as the effective internal energy per unit mass of phase k.

It is sometimes useful to have an expression for the balance of fluctuation kinetic en-
ergy, eFluctk . Its evolutionary description is derived by introducing the partition u′k =
u0 − uk into the microscopic pure phase momentum balance, taking the dot product
of this equation with Xku

′
k, and then performing the statistical average over configura-

tions (keeping in mind that 〈Xkρ0u
′〉 vanishes) to obtain (details are left to the reader, see

e.g. [42])

αkρk
∂eFluctk

∂t
+ αkρkuk · ∇eFluctk = αkT

Fluct
k : ∇uk

−∇ · 〈Xkρ0
u′k · u′k

2
u′k〉

+ 〈Xku
′
k · (∇ · T0 + ρ0g0)〉 . (154)

This equation exhibits some similarity to the equation of evolution of the fluctuational
kinetic energy in a single-phase turbulent fluid [43]. The first term on the right side de-
scribes the influence of the gradient of uk on the development of eFluctk , the second term is
expected to diffuse eFluctk , and the last term represents the power developed by the stresses
and external forces [36].

For most multiphase flows, including some very (conceptually) simple flows such as
gas flow through a packed bed or through a pebble-bed nuclear reactor, the nature of eFluctk

is somewhat different than that of a turbulent single-phase flow. Contrary to a single-
phase fluid in which the fluctuations disappear for slow flows, these fluctuations for a
multiphase flow exist however slow the flow. For this reason, eFluctk that is produced by
hydrodynamic interactions between the phases has been called “pseudo-turbulence,” for
example by Lhuillier [36].
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3.1.8 Entropy Inequality

The local form of the entropy inequality (112), sometimes called the “Second Law of
Thermodynamics,” is used to place restrictions on the constitutive relations used to give
unique phase or material behaviors. With the assignment of

ψ0 = s0, J0 = −q0

θ0

, g0 =
ε0

θ0

(155)

to the variables of the generic averaged balance relationship, the averaged entropy inequal-
ity results,

∂αkρksk
∂t

+∇ · αkρkskuk ≥ ∇ · αk(Φk + ΦFluct
k )

+ αkρkSk + Ωentropy
k + Ωmass

k sintk (156)

where

Φk ≡ −

〈
Xk

q0

θ0

〉
αk

(157)

is the entropy flux,

ΦFluct
k ≡ −〈Xkρ0s

′
ku
′
k〉

αk
(158)

is the fluctuation entropy flux,

Sk ≡

〈
Xk

ρ0ε0
θ0

〉
αkρk

(159)

is a volumetric entropy source, and

Ωentropy
k ≡

〈
q0

θ0

· ∇Xk

〉
(160)

is an interfacial entropy source. This entropy inequality corresponds to what Drew and
Passman [34] call the microscopic entropy inequality. A macroscopic entropy inequality
can be obtained by summing inequalities (156) over all of the phases or materials present
in the mixture (for details, see Truesdell [44] and the other authors contained therein). The
macroscopic entropy inequality is useful for placing restrictions on the phasic or material
interaction constitutive relations. The averaged interfacial entropy inequality (interfacial
jump condition) is

no. of phases∑
k=1

Ωentropy
k + Ωmass

k sintk ≥ 0 . (161)
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3.1.9 Volume Fraction Propagation Equation

There remains one very important relationship to derive, a dynamic relationship that ef-
fectively reflects boundary conditions at the microscale. It accounts for the fact that the
constituent volume fractions may change without affecting the gross motion and, in a
sense, models the microstructural force systems operating within the multiphase mixture.
Beginning with the previous Lagrangian interface material derivative relationship for Xk,

∂Xk

∂t
+ uint · ∇Xk = 0 (162)

this equation is averaged to give〈
∂Xk

∂t
+ uint · ∇Xk

〉
=
∂αk
∂t

+ 〈uint · ∇Xk〉 = 0 . (163)

Introducing the fluctuating interface velocity u′I = uint − uI , where uI is the average
interface velocity, into this equation yields

∂αk
∂t

+ 〈uint · ∇Xk〉 =
∂αk
∂t

+ 〈(uI + u′I) · ∇Xk〉

=
∂αk
∂t

+ uI · ∇αk + 〈u′I · ∇Xk〉

=
∂αk
∂t

+ uI · ∇αk − Ωvol
k

= 0 (164)

where Ωvol
k (for which a constitutive description will be needed) is the driving function for

the change of volume fraction αk with time. In summary, the volume fraction propagation,
or volume fraction evolution equation is written as

∂αk
∂t

+ uI · ∇αk = Ωvol
k . (165)

The volume fraction evolution equation plays a central role in modern, well-posed two-
phase models with correct wave dynamics.

Even before 2000, past researchers had proposed and utilized various forms of the in-
dependent volume fraction evolution equation: second order (in time) with “microinertia”
effects [30,45], first order (in time) as above with “viscous damping” effects [46–51], and
zeroth order (in time) which amounts to a steady-state version balancing the microstruc-
tural forces operating within the Ωvol

k function [34, 52–57]. Most of these were also used
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in conjunction with so called “two pressure” two-phase flow models, which will be ex-
amined next. Since 2000, the literature has become much more voluminous, documenting
the variations of models utilizing an independent volume fraction evolution equation, usu-
ally with independent phasic pressures. Most are from Europe. It is not the intent here to
provide a review of such.

To gain closure for this set of generic material (fluid) balance equations, additional
relations must be specified which will restore information that was lost during the averag-
ing process, and render the model material specific. All of these relations are collectively
referred to as constitutive relations. Those that are pertinent to the RELAP-7 equation
system will be discussed in the following section on constitutive equations, but it is easier
to discuss the microstructural force model, which is an important part of Ωvol

k , in the vol-
ume fraction evolution equation now, before reducing the multi-dimensional model above
(which will be applied in other INL MOOSE-based applications) to the 1-D variable cross-
sectional area equation system employed in RELAP-7.

The need for, and form of, a dynamic volume fraction evolution equation is presented
next with deliberate choice of an “intuitive” engineering approach over, perhaps, a “rig-
orously theoretical” approach. Consider a cell mixture physics model for two-phase flow
in which a fixed volume V is instantaneously filled with two immiscible constituents or
phases (e.g. from a computational fluid dynamical modeling point of view, these two
constituents may have been advected into a mixed cell control volume). These two con-
stituents have masses m1 and m2 occupying volumes V1 and V2, respectively, such that

V1 + V2 = V . (166)

The constituent phases have material density ρ1 and ρ2, respectively, so

V = V1 + V2

=
m1

ρ1

+
m2

ρ2

(167)

or

1 =
V1

V
+
V2

V
= α1 + α2

=
m1

V ρ1

+
m2

V ρ2

(168)

where α1 = V1

V
and α2 = V2

V
are now volume fractions (or with ensemble averaging,

expected phasic presence) of each constituent or phase. For each phase, because ρ1 = m1

V1
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and ρ2 = m2

V2
, using a generic equation of state gives

p1 = f1(ρ1, e1)

= f1

(
m1

V1

, e1

)
(169)

p2 = f2(ρ2, e2)

= f2

(
m2

V2

, e2

)
. (170)

Generally the pressures p1 and p2 of the two phases are not equal. In fact, if V1 and V2 are
adjusted (subject to the V ∗1 + V ∗2 = V constraint) until the two phase pressures are equal
to the “equilibration” or “equilibrium pressure” or “relaxed pressure”, p, then

p = f1

(
m1

V ∗1
, e1

)
= f2

(
m2

V ∗2
, e2

)
. (171)

At this equilibrium pressure the corresponding phase volumes yield the equilibrium vol-
ume fractions

αe1 =
V ∗1
V
, αe2 =

V ∗2
V

. (172)

Alternatively, equations (169) and (170) can be rewritten as

p1 = f1(ρ1, e1)

= f1

(
m1

α1V
, e1

)
(173)

p2 = f2(ρ2, e2)

= f2

(
m2

α2V
, e2

)
= f2

(
m2

(1− α1)V
, e2

)
(174)

and equivalently, α1 can be varied until the equilibrium pressure is obtained along with the
corresponding equilibrium volume fraction(s). Note also that, for two phases α1 +α2 = 1
and consequently dα1

dt
= −dα2

dt
and d2α1

dt2
= −d2α2

dt2
. Intuitively, this can be accomplished in

a dynamical manner with
dα1

dt
=
p1 − p2

τ
. (175)

If α1 is compressed too much (such that p1 > p2) then α1 will increase with time (i.e.
relax) letting p1 reduce while α2 decreases, thereby letting p2 increase. This process will
continue until p1 = p2 = p and thus dα1

dt
= 0. The relaxation rate, τ , controls the rate at

which the phases (pressures) equilibrate or relax.
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With analogy to the classical dynamics of simple mass-dashpot systems, a more gen-
eral dynamical description of volume fractions could even be considered, wherein

d

dt

[
(microinertia)× dα1

dt

]
+ (compression viscosity)× dα1

dt
= (microstructural forces)

= F . (176)

The microstructural force F is a relaxation term that is intended to model the driving force
or resistance exhibited by the mixture to changes in its configuration (volume fractions).
Playing further upon this simple abstraction (analogy), the “microinertia” function is anal-
ogous to “mass” and the “compression viscosity” function is analogous to the viscous
damping coefficient. As a simple example from mechanics, consider the compaction of a
gas-solid particle bed [58] with

F =

{
αsαg(ps − pg − βs) , ps − βs > 0
−αsαgpg , ps − βs ≤ 0

(177)

in accordance with the view of compaction as an irreversible process. βs is the “config-
uration pressure” of the bed. If the microinertia and the configuration pressure are set to
zero, then

dα1

dt
=
α1α2(p1 − p2)

µ
(178)

where for this example µ could be referred to as the “compaction viscosity”. Note the mul-
tiplicative coefficient α1α2 in the driving force F . This term is included for two reasons.
First, α1α2 is roughly proportional to the interfacial area per unit volume, Ai

V
. Second, bet-

ter behavior results in the single-phase limit, i.e. α1 → 0, (α2 → 1) or α2 → 0, (α1 → 1).
This concept will be further refined for the two-phase flow model of RELAP-7.

3.1.10 Multi-dimensional Two-Phase Governing Equations

Before moving on to the 1-D variable cross-sectional area form of the 7-equation two-
phase model (next section), it is useful to collect a simplified multi-dimensional version
of the mass, momentum, and energy balance equations, equations (121), (140), and (147)
respectively, as well as the volume fraction evolution equation (165) with simple pressure
driving force. For the liquid (“liq” subscript) and vapor (“vap” subscript) phases, we have
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∂ (αρ)liq
∂t

+∇ · (αρu)liq = Ωmass
liq (179)

∂ (αρu)liq
∂t

+∇ · (αρu⊗ u+ αpI)liq = pint∇αliq + λ(uvap − uliq)

+ (αρ)liq g + uintΩ
mass
liq (180)

∂ (αρE)liq
∂t

+∇ · [α(ρE + p)u]liq = pintuint · ∇αliq + λu′int(uvap − uliq)

− µp′int(pliq − pvap) + EintΩ
mass
liq +Qliq (181)

∂αliq
∂t

+∇αliq · uint = µ(pliq − pvap) +
Ωmass
liq

ρint
(182)

∂ (αρ)vap
∂t

+∇ · (αρu)vap = −Ωmass
liq (183)

∂ (αρu)vap
∂t

+∇ · (αρu⊗ u+ αpI)vap = pint∇αvap − λ(uvap − uliq)

+ (αρ)vapg − uintΩmass
liq (184)

∂ (αρE)vap
∂t

+∇ · [α(ρE + p)u]vap = pintuint · ∇αvap − λu′int(uvap − uliq)

+ µp′int(pliq − pvap)− EintΩmass
liq −Qliq (185)

∂αvap
∂t

+∇αvap · uint = −µ(pliq − pvap)−
Ωmass
liq

ρint
(186)

where uint is the interface velocity inside the two-phase control volume and u′int is the
average interfacial velocity. The pressure exerted on the interfacial surface inside the two-
phase control volume, interface pressure, is denoted pint and the average interfacial pres-
sure by p′int. In these equations Qliq denotes the direct energy transfer from the vapor
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phase to the liquid phase not due to interphase mass transfer, and Ek = ek + 1
2
uk · uk +

ghk,datum (k = liq, vap) represents the phasic total energy. Note that in a two-phase sys-
tem, the saturation constraint allows either (182) or (186) to be replaced by the algebraic
relation

αvap = 1− αliq . (187)

In this relaxation model, µ has been redefined as the reciprocal of that used above to
intuitively describe the volume fraction evolution equation (where it was referred to, in a
narrow context, as a “compaction viscosity”; before that it was referred to as compression
viscosity and as a relaxation rate time constant τ ). Now in this new form, µ will be
more generally called the pressure relaxation coefficient or function and similarly λ is
the velocity relaxation coefficient or function. Relaxation models play a key role in the
modern theory of hyperbolic partial differential equations – physically, analytically, and
numerically (see Leveque [59] for an introduction).

3.1.11 One-dimensional, Variable Cross-sectional Area, Seven Equation Two-phase
Model

Because it is not economical to solve the entire two-phase flow field with highly re-
solved three-dimensional computational fluid dynamics for an entire light water reactor
coolant system, it is necessary to construct a one-dimensional model for flow in pipes,
nozzles, and other components. The one-dimensional model is constructed from the multi-
dimensional model, following the approach developed in the one-dimensional Single-
Phase Flow Model Section 2.1, to allow the representation of continuously variable cross-
sectional area.

Consider flow through a duct with local cross-sectional area A = A(x, t). Actually,
most of the time we consider local cross-sectional area to depend upon position coordinate
x only, for which a time rate of change of cross-sectional area is not necessary because for
this case ∂A

∂t
= 0. However, A(x, t) is left inside the time derivative terms for generality

and possible future use. Applying the methods developed in the Single-Phase Flow Model
Section 2.1 to the 7-equation model in Section 3.1.10 results in:

∂ (αρ)liq A

∂t
+
∂ (αρu)liq A

∂x
= −Γint

`→vAintA− Γwall
`→vPhf (188)
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∂ (αρu)liq A

∂t
+
∂αliqA (ρu2 + p)liq

∂x
= pintA

∂αliq
∂x

+ pliqαliq
∂A

∂x
+ Aλ(uvap − uliq)
− Γint

`→vAintuintA

− Γwall
`→vuintPhf

− F friction
wall,` − Ffriction,vap − F form

`

+ (αρ)liq Ag · n̂axis (189)

∂ (αρE)liq A

∂t
+
∂αliquliqA (ρE + p)liq

∂x
= pintuintA

∂αliq
∂x
− p̄intAµ(pliq − pvap)

+ ūintAλ(uvap − uliq)

+ Γint
`→vAint

(
pint
ρint
−Hliq,int

)
A

− Γwall
`→vH`Phf

+Qint,liq +Qwall,conv
` (190)

+ (αρu)liq Ag · n̂axis (191)

∂αliqA

∂t
+ uintA

∂αliq
∂x

= Aµ(pliq − pvap) (192)

− Γint
`→vAintA

ρint
− Γwall

`→vPhf

ρint

for the liquid phase, and

62



∂ (αρ)vapA

∂t
+
∂ (αρu)vapA

∂x
= Γint

`→vAintA+ Γwall
`→vPhf (193)

∂ (αρu)vapA

∂t
+
∂αvapA (ρu2 + p)vap

∂x
= pintA

∂αvap
∂x

+ pvapαvap
∂A

∂x
+ Aλ(uliq − uvap)
+ Γint

`→vAintuintA

+ Γwall
`→vuintPhf

− F friction
wall,v − Ffriction,liq − F form

v

+ (αρ)vapAg · n̂axis (194)

∂ (αρE)vapA

∂t
+
∂αvapuvapA (ρE + p)vap

∂x
= pintuintA

∂αvap
∂x

− p̄intAµ(pvap − pliq)

+ ūintAλ(uliq − uvap)

− Γint
`→vAint

(
pint
ρint
−Hvap,int

)
A

+ Γwall
`→vH`Phf

+Qint,vap +Qwall
v +Qwall,boil

` (195)
+ (αρu)vapAg · n̂axis (196)

∂αvapA

∂t
+ uintA

∂αvap
∂x

= Aµ(pvap − pliq) (197)

+
Γint
`→vAintA

ρint
+

Γwall
`→vPhf

ρint

for the vapor phase. As before, it is noted that for two-phase flow, either of the differential
relations (192) or (197) may be replaced with the algebraic relation

αvap = 1− αliq (198)

throughout, reducing the total number of equations to be solved to seven.

In equations (188)–(197), Γint
`→v is the net mass transfer per unit interfacial area from

the liquid to the vapor phase and Aint is the interfacial area per unit volume of mixture.
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Also, Hliq,int and Hvap,int are the liquid and gas total enthalpies at the interface, respec-
tively. The nomenclature has also been modified so that now uint and ūint are, respectively,
the interfacial velocity and average interfacial velocity; and pint and p̄int are, respectively,
the interfacial pressure and average interfacial pressure. In the momentum balance equa-
tions n̂axis is the unit vector directly along the axis of the duct, which is also the ± flow
direction. Of course F friction

wall,k is the frictional force due to the wall acting on phase k, and
Ffriction,k′ is the frictional force acting on phase k due to the presence of the other phase k′.
F form
k is the linear form-loss force acting on phase k. Similarly, Qint,k is the direct heat

transfer from the interface to phase k, Qwall
v is the direct heat transfer rate per unit length

from the wall to the vapor phase, and Qwall,conv
` and Qwall,boil

` are the convective and boil-
ing components of wall heat transfer rate per unit length to liquid, respectively. Note that
the boiling component Qwall,boil

` is used in vaporization and thus ultimately ends up in the
vapor phase. The wall mass flux from liquid to vapor is denoted by Γwall

`→v, and the heated
perimeter is denoted by Phf.

Equation system (188)–(197) is the basic system solved with RELAP-7. The sys-
tem was implemented within the MOOSE computational framework following a series of
logically-complete steps [60] designed to confidently allow physically- and mathematically-
meaningful benchmark testing at each step of increased complexity. This 7-equation two-
phase model allows both phases to be compressible. Because pvap is not, in many practical
problems, very different from pliq (with the exception of surface tension effects), most
traditional two-phase models assume pvap = pliq which allows the elimination of one de-
pendent variable and serves as a substitute for the volume fraction evolution equation.
However, pvap u pliq does not entail the same property for their partial derivatives [53].
Therefore the assumption of pvap = pliq is very restrictive when derivatives are involved.
As pointed out by Boure and Delhaye [61], it requires that pressure disturbances have the
same average effect on the two phases and, in particular, that they propagate at the same
velocity within the phases. While the assumption pvap = pliq has proved useful in many
cases, it is definitely too restrictive when propagation phenomena are important2. The
RELAP-7 approach forgoes this assumption and retains the 7-equation model as its basis.

More importantly, the 7-equation model allows for complete mechanical and thermo-
dynamic non-equilibrium between the phases and it is hyperbolic and well-posed in the

2With the complex characteristics that can occur with the classical 6-equation model, it is not clear how
to set the boundary conditions, and high wave number instabilities occur during convergence testing. It
has been argued that equation sets with complex characteristics may still model a range of phenomena quite
adequately if the numerical method introduces sufficient dissipation to damp the high frequency instabilities.
There are obviously real physical effects that do this but are left out of the equations. As pointed out in [62]
one does not always know whether these effects are important and under what conditions they are important.
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sense of Hadamard3. The hyperbolicity (and thus well-posedness) of this model is a direct
result of incorporation of both phases’ compressibilities, and not of a manipulation of in-
terfacial variables as is done in CATHARE [65]. The system has symmetrically occurring
eigenvalues and eigenvectors with respect to the two-phases; its wave speeds (eigenvalues)
are (u±c)liq and (u±c)vap for the genuinely nonlinear fields, and uliq, uvap, and uint (mul-
tiplicity 2) for the linear degenerate fields. This 7-equation two-phase model is a relaxation
model and it has the very desirable feature of naturally devolving to simpler, even classi-
cal, models upon mechanical and/or thermodynamical relaxation [66]. Thus, this model
can readily couple to simpler models via a natural transition from the 7-equation model to
a classical 6-equation (ill-posed) model, a 5-equation Kapila model [67, 68], a 4-equation
homogeneous relaxation model (HRM), or a 3-equation homogeneous equilibrium model
(HEM). It is noted that, because of this feature, experience shows that some physically and
mathematically realistic solutions may, upon first examination, appear counter-intuitive to
the inexperienced modeler. More will be said about this later.

3.2 Constitutive Models

Without additional closure equations the balance relations derived above are generic, i.e.
they apply to all materials (fluids). They must made to apply to the unique material (fluid)
being considered – material specific. Also, though averaging the microlevel balance equa-
tions led to a “simplified” or perhaps more tractable model, this simplification (averaging)
led to a loss of information, and some additional relations must also be specified to sup-
ply (or restore) at least some information that was lost in this process4. Collectively, any
additional relations, or sub-models, that must be specified to render mathematical closure
(allowing a solution to be obtainable) to the generic balance equations are known as “con-
stitutive relations”. Familiar examples of constitutive relations from single-phase flow
include ideal gas equation of state, Newtonian fluid stress-rate of strain laws, Fourier’s
law for heat conduction, k-ε turbulence model.

Because the 7-equation two-phase model’s most unique features are reflected in the

3The mathematician Jacques Hadamard [63] espoused that a “well-posed” mathematical model of phys-
ical phenomena should have the properties that (1) a solution exists, (2) the solution is unique, and (3) the
solution’s behavior depends continuously upon the initial conditions. Problems that are not well-posed are
said to be “ill-posed.” Early researchers in two-phase flow knew that, if due diligence was not exercised, an
ill-posed formulation could result; and they understood the need for a well-posed model, as summarized in
Hughes et al. [64].

4The process of averaging the balance equations produced a system with more unknowns than equations;
thus postulates or empirical correlations are required to resolve this deficiency.
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presence of a volume fraction evolution equation, interfacial pressure and velocity, and
mechanical relaxation terms involving pressure and velocity relaxation, it is natural to be-
gin with their constitutive relations. Constitutive ideas associated with the volume fraction
evolution equation were discussed previously for pedagogical reasons. Thermodynamical
relaxation will be discussed subsequently, followed by other closures.

3.2.1 Interface Pressure and Velocity, Mechanical Relaxation Coefficients

In the original 7-equation model of Baer and Nunziato [50], pint was chosen to be equal to
the phasic pressure of the phase with the largest acoustic impedance which for two-phase
liquid-vapor flow corresponds to that of the liquid, i.e. pint = pliq. On the other hand, they
took the interface velocity uint to be that of the phase with the smallest acoustic impedance,
which for liquid-vapor flows corresponds to that of the vapor phase, or uint = uvap. Later,
Saurel and others chose the following interfacial values

pint =
∑
k=1,2

αkpk (199)

uint =

∑
k=1,2 αkρkuk∑
k=1,2 αkρk

. (200)

In this early research, mechanical relaxation parameters µ and λ were also specified in
a, more or less, ad hoc manner. Abgrall and Saurel [69] introduced a clever generaliza-
tion to the development of the 7-equation model, the discrete equation method (DEM),
which permits some interesting closure capability. In reviewing the traditional approach
presented above, the microscopic level, single-phase balance equations (PDEs) are first av-
eraged to obtain macroscopic averaged balance equations (again PDEs). Then appropriate
simplifying assumptions, including constitutive relations, are applied to this macroscopic
system giving a simplified averaged balance equation system. Finally, the simplified aver-
aged PDE system is discretized numerically using finite difference, finite volume, or finite
element methods and the numerical solution is obtained.

With the DEM approach, a generic phase distribution topology is first assumed, then
a discretized solution is developed within the computational cell employing Riemann or
approximate Riemann methods. Then finally, this discrete local solution is effectively av-
eraged over the cell volume and time to obtain a meaningful macroscopic solution. The
DEM method carries a pressure and velocity for each phase and, because it effectively
only solves Euler equations locally, is hyperbolic and well-posed and gives correct wave
dynamics. But this new homogenization method offers an additional bonus; the DEM can

66



be used not only to obtain the 7-equation model above, but also explicit closure formulas
for pint, uint, µ, and λ that are symmetric, compatible with the second law of thermo-
dynamics, and responsible for the fulfillment of interface conditions when dealing with
contact/interface problems! In the continuous limit of small mesh spacing and time steps
along with employment of the Godunov weak wave limit, the finite closure relations con-
verge [15, 70] to

pint = p̄int +
ZliqZvap
Zliq + Zvap

sgn
(
∂αliq
∂x

)
(uvap − uliq) (201)

p̄int =
Zvappliq + Zliqpvap

Zliq + Zvap
(202)

uint = ūint + sgn
(
∂αliq
∂x

)
pvap − pliq
Zliq + Zvap

(203)

ūint =
Zliquliq + Zvapuvap

Zliq + Zvap
(204)

λ =
1

2
µZliqZvap (205)

µ =
Aint

Zliq + Zvap
(206)

where λ is the velocity relaxation coefficient function, µ is the pressure relaxation coeffi-
cient function, Zk = ρkwk, (k = liq, vap), is the phasic acoustic impedance and Aint is
the specific interfacial area (i.e. the interfacial surface area per unit volume of two-phase
mixture) which must be specified from some type of flow regime map or function. The
DEM model for two-phase flow of water and its vapor in a one dimensional duct of spa-
tially varying cross-section was derived and demonstrated with these closures by Berry et
al. [13].

Remark (1): From this specification of λ and µ it is clear that special coupling is rendered.
To relax the 7-equation model to the ill-posed classical 6-equation model, the pressures
should be relaxed toward a single pressure for both phases. This is accomplished by spec-
ifying the pressure relaxation coefficient to be very large, i.e. letting it approach infinity.
But if the pressure relaxation coefficient goes to infinity, so does the velocity relaxation
rate also approach infinity. This then relaxes the 7-equation model not to the classical
6-equation model, but to the mechanical equilibrium 5-equation model of Kapila. This re-
duced 5-equation model is also hyperbolic and well-posed. The 5-equation model provides
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a very useful starting point for constructing multi-dimensional interface resolving methods
which dynamically captures evolving, and even spontaneously generating, interfaces [71].
Thus the 7-equation model of RELAP-7 can be relaxed locally to couple seamlessly with
such a multi-dimensional, interface resolving code.

Remark (2): Numerically, the mechanical relaxation coefficients µ (pressure) and λ (veloc-
ity) can be relaxed independently to yield solutions to useful, reduced models (as explained
previously). It is noted, however, that relaxation of pressure only by making µ large with-
out relaxing velocity will indeed give ill-posed and unstable numerical solutions, just as
the classical 6-equation two-phase model does, with sufficiently fine spatial resolution, as
confirmed in [13, 72].

Remark (3): Even though the implementation of the 7-equation two-phase model within
RELAP-7 (or any other code for that matter) does not use the generalized approach of
DEM, the interfacial pressure and velocity closures as well as the pressure and velocity
relaxation coefficients of Equations (201) to (206) are utilized.

3.2.2 Wall and Interface Direct Heat Transfer

Without wall boiling, the direct, convective heat transfer from the wall to fluid phase k
will be the same as that of a single-phase except the duct wall area over which this heat
transfer can occur is weighted by the wetted fraction of the phase, κk. Thus the wall heat
flux to phase k is

qwall
k = κkh

wall
k (Twall − Tk) . (207)

The total heat flux is then qwall = qwall
` + qwall

v . The wall heat power per unit length to phase
k is then

Qwall
k = qwall

k Phf , (208)

where Phf is perimeter over which wall heat transfer occurs. Similarly, the direct heat
transfer from/to the interface to/from the phase k, which will also be used to determine the
mass transfer between the phases, is

Qint,k = hT,k (Tint − Tk)AintA (209)

with hT,k denoting the convective heat transfer coefficient between the interface and phase
k. The phasic bulk temperature Tk is determined from the respective phase’s equation of
state.
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For wall heat flux sufficiently large to cause wall boiling a more elaborate model, which
accounts for interphase mass transfer due to this wall heat transfer, must be utilized. Such
a wall boiling model is detailed in the latter portion of the following section.

3.2.3 Interphase Mass Transfer and Wall Boiling

For a vapor to be formed from the liquid phase (vaporization) energy must be added to the
liquid to produce vapor at nucleation sites; whether the liquid is heated directly or decom-
pressed below its saturation pressure. A liquid to vapor phase change may occur based
on two main mechanisms. The first is related to vaporization induced by external heating
or heat transfer in a nearly constant pressure environment which is called heterogeneous
boiling, or simply boiling. This heat input can occur through a solid/liquid interface with
the solid typically hotter than the liquid, or through a liquid/gas interface with the gas
being hotter than the liquid.

The second case corresponds to “flashing” vaporization such as cavitation induced
by strong and rapid depressurization of the liquid phase (this is sometimes referred to as
homogeneous boiling). In this relaxation process no extra energy is needed for the phase
change; the necessary energy is already contained in the liquid phase in the form of internal
energy. The process of phase change from vapor to liquid is known as condensation. The
vapor condenses when it loses energy by heat transfer to a cool surface, but decompression
of a saturated vapor also causes condensation at nucleation sites in the vapor. Nucleation
sites are small particles or impurities in a fluid, or cavities or protrusions on a surface
from which bubbles or droplets can grow during a change of phase. The phase change by
condensation is similar to the first mechanism discussed and will be treated in the same
manner.

To examine the mass flow rate between phases, local mechanisms of the vaporiza-
tion (condensation) process are considered between the liquid phase and its associated
vapor in the presence of temperature gradients. The mechanisms of interest here are dom-
inated by heat diffusion at the interface. The pertinent local equations to consider are the
mass and energy equations. As a vaporization front propagates slowly (on the order of
1 mm/s to 1 m/s) compared to acoustic waves present in the medium (which propagate
with speeds of the order 1 km/s), acoustic propagation results in quasi-isobaric pressure
evolution through vaporization fronts. The momentum equation is therefore not needed –
because the quasi-isobaric assumption (neglecting the pressure and kinetic energy varia-
tions in the total energy equation) is made. The mass and energy balance equations are
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integrated over a “pill-box” control volume containing an interface (see e.g. Kuo [73]), as
shown in the upper graphic of Figure 2, to obtain the algebraic “jump conditions”

ρliq,intuliq,int · n̂liq + ρvap,intuvap,int · n̂vap = 0 (210)
or

Γliq + Γvap = 0 (211)

for mass, and

Γliqhliq,int + qliq,int · n̂liq + Γvaphvap,int + qvap,int · n̂vap = 0 (212)

for energy, where the subscript int denotes the interface location. For convection domi-
nated heat flux at the interface, and using local equilibrium conditions between phases at
the local interface (equality of pressure and temperature), the heat fluxes can be defined as

qk,int · n̂k = −kk∇Tk,int · n̂k
= hT,k (Tint − Tk) (213)

where Tint is the common interface temperature of phases. Combining these relations
gives a simple expression for the interphase mass flow rate

Γ = Γvap =
hT,liq (Tliq − Tint) + hT,vap (Tvap − Tint)

hvap,int − hliq,int

=
hT,liq (Tliq − Tint) + hT,vap (Tvap − Tint)

Lv (Tint)
(214)

where Lv (Tint) = hvap,int−hliq,int represents the latent heat of vaporization. The interface
temperature is determined by the saturation constraint Tint = Tsat(p) with the appropriate
pressure p = p̄int determined above, the interphase mass flow rate is thus determined. The
lower graphic of Figure 2, schematically shows the p-T state space in the vicinity of the
saturation line (shown for the case with Tliq < Tvap).

To better illustrate the model for vaporization or condensation, Figure 3 shows pure
liquid and pure vapor regions separated by an interface. Representative temperature pro-
files are shown for heat transfer from vapor to liquid or liquid to vapor. As discussed by
Moody [1], either vaporization or condensation can occur for both temperature profiles.
The interphase mass transfer is determined by the net interfacial heat transfer: if net heat
transfer is toward the interface, vapor will form; conversely, if net heat transfer is away
from the interface, liquid will condense. Figure 3 shows heat transfer rates qvap and qliq
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from the vapor and liquid sides of the interface. For bidirectional phase change (vapor-
ization and condensation), mass transfer based on heat balance at the interface is adopted.
When vaporization occurs, vapor is assumed to form at a saturated interface temperature
Tint = Tsat(p̄int). If condensation occurs, liquid is assumed to form also at a saturated
interface temperature Tint = Tsat(p̄int). The interfacial total enthalpies correspond to the
saturated values in order that the interphase mass transfer rate and conservation of total
energy be compatible:

Hk,int = hk,int +
1

2
u2
int (215)

for phase k = (liq, vap), where hk,int is the phase k specific enthalpy evaluated at the
interface condition. Phasic specific enthalpy depends upon the equation of state used and
will be discussed with the equations of state. The interfacial density corresponds to the
liquid saturated density ρint = ρliq,sat(pint).

To summarize, the total saturated phasic enthalpies are constructed as

Hliq,sat = hliq,sat + 0.5v2
int (216)

Hvap,sat = hvap,sat + 0.5v2
int (217)

along with the total heat of vaporization at Tint = Tsat

Ltot(Tsat) = Hvap,sat −Hliq,sat. (218)

Notice that this step was not really necessary in this case Ltot(Tsat) and Lvap(Tsat), which
was obtained from the equations of state (see above), are identical. The interphase mass
transfer rate (per unit interfacial area) per unit volume coming from the liquid phase across
the interfacial area can now be determined from

Γint,vap =
hconv,liq(Tliq − Tint) + hconv,vap(Tvap − Tint)

Lvap(Tsat)
. (219)

At this point, all information necessary to compute the interface energy transfer due to
mass transfer as well as the direct energy transfer has been described, i.e.

Liquid energy equation terms

+ Γint,vap(Aint)(
pint
ρint
−Hliq,sat)A+ (Aint)hconv,liq(Tint − Tliq)A (220)

Vapor energy equation terms

− Γint,vap(Aint)(
pint
ρint
−Hvap,sat)A+ (Aint)hconv,vap(Tint − Tvap)A. (221)
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Because our two-phase model is cast as a 1-D variable cross-sectional area model,
in order to capture realistic multidimensional physical phenomena such as boiling and
frictional shear stress that occur at the wall, additional mechanistic terms must be added.
Simple forms of these terms will be described in the balance of this section and in the next
section.

Thus, it is first noted that additional vapor will be generated at the wall, Γwall
`→v, due to

local wall boiling such that Γ`→vA = Γint
`→vAintA+ Γwall

`→vPhf.

To describe this additional wall mass transfer term, Γwall
`→v, a wall-boiling model has

been incorporated into RELAP-7 in which the wall heat flux is first partitioned into a
portion which may go directly to convective heat transfer to the vapor phase and a portion
which is available to both convectively heat the liquid phase and generate vapor via wall
boiling. This partitioning is specified with a simple function of the liquid volume fraction
κ(αl). The portion of the wall heat flux available to convectively heat the liquid phase and
generate vapor is further partitioned into a portion which may convectively heat the liquid
phase and a portion which goes toward generation of vapor by first bringing a portion
of the liquid to the saturation condition then bringing it to the saturated vapor condition.
This partitioning fraction fboil depends upon the wall temperature and the saturated liquid
temperature, i.e. fboil(Twall, Tsat,liq). Rendering this into equation form,

Qwall,total = Qwall,vap +Qwall,liq

= Qwall,vap +Qwall,liq,conv +Qwall,liq,boil (222)

where for a simple model in RELAP-7

Qwall,vap = hwall,vap(Twall − Tvap)(1− κ)awallA

= hwall,vap(Twall − Tvap)(1− κ)Phf (223)

Qwall,liq = hwall,liq(Twall − Tliq)κPhf
= Qwall,liq,conv +Qwall,liq,boil

= (1− fboil)Qwall,liq + fboilQwall,liq (224)

so
Qwall,liq,conv = (1− fboil)hwall,liq(Twall − Tliq)κPhf (225)

Qwall,liq,boil = fboilhwall,liq(Twall − Tliq)κPhf (226)
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It is emphasized that additional, perhaps more sophisticated or realistic, models will be
described in subsequent sections. The rate of vapor generated by boiling at the wall due to
wall heat flux is then

Γwall
`→vPhf =

Qwall,liq,boil

hint
v − h`

, (227)

where hint
v − h` represents the change in specific energy required for vaporization, and the

interfacial vapor specific enthalpy is defined as

hint
v ≡ hsat(p̄int) = hv(Tsat(p̄int), p̄int) = hv(Tint, p̄int). (228)

The total vapor production is the sum of the vapor transferred from the liquid phase
directly via the interfacial area in the bulk flow and the vapor produced at the wall:

Γ`→vA = Γint
`→vAintA+ Γwall

`→vPhf.

Again it is recalled that the interface saturation temperature corresponds to the interface
pressure pint.

Here, for the simple RELAP-7 model, fboil is zero while the wall temperature is less
than the liquid saturation temperature corresponding to the liquid pressure and drops ex-
ponentially (90% variation over 9.2 degrees) for wall temperatures greater than the liquid
saturation temperature, i.e.

Twall ≤ Tsat,liq ⇒ fboil = 0

Twall > Tsat,liq ⇒ fboil = 1− exp[−0.25(Tsolid,wall − Tsat,liq)]. (229)

In the above κ is defined to be zero for αliq < 0.01, ramp up linearly to a value of 1.0 at
αliq = 0.1, then remain constant at a value 1.0 for 0.01 < αliq < 1.0. Again, more realistic
models will be described subsequently.

3.2.4 Wall and Interphase Friction

A simple wall friction model results from making the same assumptions as for single-
phase duct flow with the exception that the duct wall area over which the shear stress acts
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is multiplied by the fraction of the wall area which the phase k occupies, χk. Thus the
linear friction force for two-phase flow is the following:

F friction
wall,k =

φfriction
k fwall,k

dh

(
1

2
ρkuk |uk|

)
χkA (230)

for phases k = (liq, vap), where fwall,k is the single-phase wall friction factor associated
with phase k and φfriction

k is the two-phase multiplier for the friction factor for phase k. For
a simple approximation of χk, one may assume that it is equal to the volume fraction αk;
however, in general, this is dependent on flow regime.

The frictional pressure drop in each phase will be different in general due the different
velocities of the two phases. However, because of the tendency toward pressure equilib-
rium between the phases an effective pressure drop will be realized.

The friction force, or viscous drag, acting between the two phases due to their relative
motion is also given in analogy to that of single-phase duct flow:

Ffriction,k′ = fk, k′
1

2
ρk(uk − uint) |uk − uint|AintA (231)

for k = (liq, vap), k′ = (vap, liq), with fk,k′ denoting the friction factor acting upon phase
k due to the (relative) motion of the other phase k′. This equation is rewritten as

Ffriction,k′ = Kk,k′(uk′ − uk)A. (232)

For a simple model with bubbles and droplets on the ends of the phasic topological
spectrum with an interpolation between these two for intermediate volume fractions, as
was done for the interphase mass transfer above, the coefficientKk,k′ is obtained after [74]
by first determining effective bubble/droplet radius, r0, as

if αvap ≤ αvap,A : Bubbles

r0 = rbub (233)

if αvap ≥ αvap,B : Droplets

r0 = rdrop (234)
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if αvap,A < αvap < αvap,B : Linear Interpolation

r0 = rbub,A +
(rdrop,B − rbub,A)(αvap − αvap,A)

αvap,B − αvap,A
. (235)

Then
Kk,k′ =

ρAint
8

[CD|uk − uk′|+
12ν̂

r0

] (236)

where

ρ = αvapρvap + (1− αvap)ρliq
ν̂ = αvapν̂vap + (1− αvap)ν̂liq (kinematic viscosity) (237)

CD = 0.5. (238)

As with the simple wall boiling model, in RELAP-7 this simple wall friction model can
be replaced with more sophisticated and realist models which are described later.

3.2.5 Distributed Form Losses

To get the 2-phase distributed form loss term for phase k, one follows the same process
as for single phase, given in Section 2.2.2, but pressure will no longer be with respect to
the total cross-sectional area A, but with respect to the phasic cross-sectional area αkA.
Additionally, in general, a two-phase multiplier φform

k is applied:

F form
k = φform

k K ′k

(
1

2
ρkuk |uk|

)
αkA . (239)

3.2.6 Nonequilibrium, Seven-Equation, Two-Phase Flow Model Summary

Combine the discussion from the previous sections with the conservation equations results
in the phasic balance equations of mass, momentum, and total energy along with volume
fraction evolution:
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∂ (αρ)liq A

∂t
+
∂ (αρu)liq A

∂x
= −Γint

`→vAintA− Γwall
`→vPhf +

∂fliq
∂x

(240)

∂ (αρu)liq A

∂t
+
∂αliqA (ρu2 + p)liq

∂x
= pintA

∂αliq
∂x

+ pliqαliq
∂A

∂x
+ Aλ(uvap − uliq)
− Γint

`→vAintuintA− Γwall
`→vuintPhf

− F friction
wall,` − Ffriction,vap − F form

`

+ (αρ)liq Ag · n̂axis

+
∂gliq
∂x

(241)

∂ (αρE)liq A

∂t
+
∂αliquliqA (ρE + p)liq

∂x
= pintuintA

∂αliq
∂x
− p̄intAµ(pliq − pvap)

+ ūintAλ(uvap − uliq)

+ Γint
`→vAint

(
pint
ρint
−Hliq,int

)
A

+ Ainthconv,liq(Tint − Tliq)A
+Qwall,conv

`

− Γwall
`→vH`Phf

+ (αρu)liq Ag · n̂axis

+
∂ (hliq + uliqgliq)

∂x
(242)

∂αliqA

∂t
+ uintA

∂αliq
∂x

= Aµ(pliq − pvap)−
Γint
`→vAintA

ρint
− Γwall

`→vPhf

ρint

+
∂lliq
∂x

(243)

for the liquid phase, and
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∂ (αρ)vapA

∂t
+
∂ (αρu)vapA

∂x
= Γint

`→vAintA+ Γwall
`→vPhf +

∂fvap
∂x

(244)

∂ (αρu)vapA

∂t
+
∂αvapA (ρu2 + p)vap

∂x
= pintA

∂αvap
∂x

+ pvapαvap
∂A

∂x
+ Aλ(uliq − uvap)
+ Γint

`→vAintuintA+ Γwall
`→vuintPhf

− F friction
wall,v − Ffriction,liq − F form

v

+ (αρ)vapAg · n̂axis

+
∂gvap
∂x

(245)

∂ (αρE)vapA

∂t
+
∂αvapuvapA (ρE + p)vap

∂x
= pintuintA

∂αvap
∂x

− p̄intAµ(pvap − pliq)

+ ūintAλ(uliq − uvap)

− Γint
`→vAint

(
pint
ρint
−Hvap,int

)
A

+ Ainthconv,vap(Tint − Tvap)A
+Qwall

v +Qwall,boil
`

+ Γwall
`→vH`Phf

+ (αρu)vapAg · n̂axis

+
∂ (hvap + uvapgvap)

∂x
(246)

∂αvapA

∂t
+ uintA

∂αvap
∂x

= Aµ(pvap − pliq) +
Γint
`→vAintA

ρint
+

Γwall
`→vPhf

ρint

+
∂lvap
∂x

(247)

for the vapor phase. The terms shown in red are viscous regularizations added as part of
the entropy viscosity method, EVM. The entropy viscosity method is an approach to regu-
larization which is applied purely to stabilized and to insure compatibility of the entropy
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inequality when capturing discontinuities (shocks) with this otherwise hyperbolic system
of equations. More will be said about these terms as well as their correct formulation in
the subsequent Numerical Methods chapter.

3.2.7 Stiffened Gas Equation of State for Two-phase Flows

With the 7-equation two-phase model each phase is compressible and behaves with its own
convex equation of state (EOS). For initial development purposes it was decided to use a
simple form capable of capturing the essential physics. For this purpose the stiffened gas
equation of state (SGEOS) [4] was selected

p(ρ, e) = (γ − 1)ρ(e− q)− γp∞ (248)

where p, ρ, e, and q are the pressure, density, internal energy, and the binding energy of
the fluid considered. The parameters γ, q, and p∞ are the constants (coefficients) of each
fluid. The first term on the right hand side is a repulsive effect that is present for any
state (gas, liquid, or solid), and is due to molecular vibrations. The second term on the
right represents the attractive molecular effect that guarantees the cohesion of matter in
the liquid or solid phases. The parameters used in this SGEOS are determined by using a
reference curve, usually in the

(
p, 1

ρ

)
plane.

LeMetayer [4] uses the saturation curves as this reference curve to determine the stiff-
ened gas parameters for liquid and vapor phases. The SGEOS is the simplest prototype
that contains the main physical properties of pure fluids, repulsive and attractive molecular
effects, thereby facilitating the handling of the essential physics and thermodynamics with
a simple analytical formulation. Thus each fluid has its own thermodynamics. For each
phase the thermodynamic state is determined by the SGEOS:

e(p, ρ) =
p+ γp∞
(γ − 1)ρ

+ q (249)

ρ(p, T ) =
p+ p∞

(γ − 1)cvT
(250)

h(T ) = γcvT + q (251)

g(p, T ) = (γcv − q′)T − cvT ln
T γ

(p+ p∞)γ−1 + q (252)
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where T , h, and g are the temperature, enthalpy, and Gibbs free enthalpy, respectively, of
the phase considered. In addition to the three material constants mentioned above, two
additional material constants have been introduced, the constant volume specific heat cv
and the parameter q′. The method to determine these parameters in liquid-vapor systems,
and in particular the coupling of liquid and vapor parameters, is given in [4]. The values
for water and its vapor from that reference are given in Table 2. These parameter values
appear to yield reasonable approximations over a temperature range from 298 to 473K.

Unlike van der Waals type modeling where mass transfer is a thermodynamic path,
with the 7-equation two-phase model the mass transfer modeling, which produces a re-
laxation toward thermodynamic equilibrium, is achieved by a kinetic process. Thus the
7-equation model preserves hyperbolicity during mass transfer. From equation (251) it is
readily seen that the phase k specific enthalpy evaluated at the interface condition from
equation (215) is

hk,int = cp,kTint + qk (253)

because cp,k = γkcv,k.

The bulk interphase mass transfer from the liquid phase to the vapor phase Γ is due
to their difference in Gibb’s free energy. At saturated conditions the Gibb’s energies of
the two-phases are equal. It is necessary to determine the saturation temperature Tsat(p)
for given pressure p = p̄int and the heat of vaporization Lv (Tsat(p̄int)) at this saturation
temperature with the SGEOS for each phase. For this calculation the procedure of [4] is
adopted. This procedure for the determination of SGEOS parameters can be made very
accurate provided the two reference states are picked sufficiently close to represent the
experimental saturation curves as locally quasi-linear. Restrictions occur near the critical
point, but away from this point wide ranges of temperatures and pressures can be consid-
ered. At thermodynamic equilibrium at the interface, the two phasic Gibbs free enthalpies
must be equal, gvap = gliq, so the use of equation (252) yields

ln (p+ p∞,vap) = A+
B

T
+ C ln(T ) +D ln (p+ p∞,liq) (254)
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where

A =
cp,liq − cp,vap + q′vap − q′liq

cp,vap − cv,vap
(255)

B =
qliq − qvap

cp,vap − cv,vap
(256)

C =
cp,vap − cp,liq
cp,vap − cv,vap

(257)

D =
cp,liq − cv,liq
cp,vap − cv,vap

. (258)

Relation (254) is nonlinear, but can used to compute the theoretical curve Tsat(p). A
simple Newton iterative numerical procedure is used. With Tsat(p) determined, the heat of
vaporization is calculated as

Lv (Tint) = hvap,int − hliq,int
= hk,int

= (γvapcv,vapT + qvap)− (γliqcv,liqT + qliq) . (259)

3.2.8 Spline Based Table Look-up Method with IAPWS-95 Equation of State for
Steam and Water

For the simulation of two-phase flows with RELAP-7 accurate equations of state must
be used to obtain the properties of steam and water. Moreover, for CPU-intensive nu-
merical simulations with this code, thermodynamic and transport properties of steam and
water are calculated extremely often. Because the dependent variables of the two-phase
model partial differential equations are mass-, momentum-, and total energy-densities the
thermodynamically independent variables of the required property functions are specific
volume and specific internal energy (v, e). These are readily computed from the phasic
dependent variables as

vk =
1

ρk
=

αk
(αρ)k

, k = {liq, vap} (260)

ek =
(αρE)k
(αρ)k

− 1

2

(αρu)2
k

(αρ)2
k

, k = {liq, vap} . (261)
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Then other phasic properties are functions of these two phasic thermodynamic properties,
e.g. pressure pk = f (vk, ek).

Determining properties as a function of (v, e) from an accurate equation of state such
as IAPWS-95 would normally require backward functions for calculations from pressure
and specific volume (p, v) and specific internal energy and specific entropy (e, s). This
requires an iterative solution that is very time-consuming and not computationally effi-
cient. Therefore, in the original development of RELAP-7 property calculations were
simplified through the use of the stiffened gas equation of state for each phase. These
simplifications cause, depending on the range of state, inaccuracies in the results of the
reactor system simulation. To provide fast and accurate property calculation algorithms,
RELAP-7 was modified to employ the Spline-Based Table Look-up (SBTL) Method [75]
which was developed in a project of the International Association for the Properties of Wa-
ter and Steam (IAPWS). With this method properties from existing accurate equations of
state, such as IAPWS-95 for steam and water, can be reproduced with high accuracy and
significantly reduced computational times. Under INL direction, the SBTL method based
on the IAPWS-95 properties for steam and water was extensively modified for RELAP-7,
by Matthias Kunick at Zittau/Goerlitz University of Applied Sciences [76], to allow the
calculation of not just the equilibrium properties for the homogeneous equilibrium model
(HEM), but also to provide the metastable properties that are needed by the 7-equation,
nonequilibrium, two-pressure model.

Table look-up methods can be well-suited for fast and accurate property calculations.
A table is populated with discrete values of the required properties which are calculated
from an available equation of state such as IAPWS-95. During the simulation process,
properties are determined from this look-up table through the use of simple interpolation
and approximation algorithms. The Spline-Based Table Look-up (SBTL) method [75]
applies polynomial spline interpolation techniques to reproduce the results of the IAPWS-
95 equation of state with high accuracy and low computing time. It employs specialized
coordinate transformations and simplified search algorithms to minimize the computing
time and to optimize the look-up table for the desired accuracy [77].

For the numerical process simulations here, the continuous, piecewise-defined spline
functions need additionally to be only once continuously differentiable. Therefore the
SBTL method utilizes a simple bi-quadratic spline polynomial which offers the additional
advantage of being analytically solvable in terms of the independent variables. This latter
property allows the calculation of the inverse spline functions, i.e. the numerically consis-
tent backward functions. Because the bi-quadratic polynomial spline has a constant sec-
ond derivative which precludes its capture of changing curvature, SBTL method allows the
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transformation of the variables of the interpolated function in order to minimize the third
derivative, i.e. the coordinates are transformed in such manner that the change in curvature
of the underlying function is reduced. This allows the spline polynomial to reproduce the
transformed property function more easily and with greater accuracy [77]. For the version
of SBTL utilized for RELAP-7, the specific internal energy e is not transformed while the
specific volume is transformed as v̄ = ln(v).

For example, a two-dimensional spline-based property function, such as pressure, for
the liquid phase would be written pL(v̄, e) while the same property for the vapor (gas)
phase would be written pG(v̄, e). In the RELAP-7 nonequilibrium, 7-equation two-phase
model the phasic specific internal energies and phasic transformed specific volumes are
passed, respectively, to compute each corresponding phasic property function. It is impor-
tant to point out that for the 7-equation two-phase model, these phasic property functions
can be either normal (equilibrium) single phase values or metastable (nonequilibrium) sin-
gle phase values.

For the SBTL Method the spline function is created in transformed coordinates (v̄, e)
and interpolates values from a logically rectangular set of discrete data points called nodes.
Locally defined spline polynomials are defined over a local rectangular cells having nodes
at their centers and knots at their four corners. Four polynomial cells are connected at
each knot, see Figure 4. The equidistant nodes (in transformed space) are distributed in a
manner to insure the required accuracy of the spline function over the full range of validity.
An efficient search algorithm is employed to rapidly determine the grid cell in which an
arbitrary (v̄, e) is located. The locally defined polynomial must intersect the cell node,
e.g. pLi,j(v̄i, ej), while its partial state derivatives with respect to v̄ and e must match at
the right and left edges (located midway between the nodes in the horizontal direction)
and, respectively, the top and bottom edges (located midway between nodes in the vertical
direction). At the cell corners, knots, the cross derivatives of all four contiguous cells must
match. The equations representing these conditions, the composite of all of these nine-
point stencil cells, form a system of equations that are solved globally to yield the local
polynomial coefficients for each cell [75] [78]. As an illustration, the pressure of one of
the phases (the phasic subscript is supressed here purely for clarity of exposition) would
be determined from the expression

p{i,j}((v̄, e) =
3∑

k=1

3∑
l=1

aijkl(v̄ − v̄i)k−1(e− ej)l−1

where aijkl are the polynomial spline coefficients.
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Figure 4. (v̄, e) state space spline polynomial cell PSPL
ij (v̄, e)

[note: v̄ is denoted vt], with node (center circle), knots (corner
squares), and mid-points (edge x’s) plus neighboring cells and
nodes.

The SBTL method was applied to industrial formulation IAPWS-IF97 in [77] and
tested in multidimensional CFD simulations of condensing steam in a turbine cascade.
With this approach to obtaining real fluid properties the computing times were increased
by a factor of only 1.4 over the same calculation using analytical ideal gas values, and these
CFD simulations using the SBTL method were 6-10 times faster than using IAPWS-IF97
directly [77] (presumably in an iterative manner).

The following thermodynamic and transport properties are provided by the modified
SBTL Package for equiliibrium mixture and for each phase (stable and metastable) as a
function of respective phasic specific volume v and specific energy e, as well partial deriva-
tives of the property with respect to v and e (it is noted that RELAP-7 employs implicit
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temporal integration and needs a Jacobian which is based on these derivatives, which will
be discussed in the following chapter describing the numerical methods it uses):

p(v, e) – pressure
T (v, e) – temperature
w(v, e) – sound speed
cp(v, e) – isobaric specific heat
cv(v, e) – isochoric specific heat
g(v, e) – Gibbs energy
s(v, e) – specific entropy

k(v, e) – thermal conductivity
ν(v, e) – dynamic viscosity
σ(T (v, e)) – surface tension.

For convenience the following functions are also provided:

ρ(p, T ) – mass density (1/v) as a function of pressure and temperature
e(p, T ) – specific internal energy as a function of pressure and temperature

along with their partial derivatives with respect to pressure p, and temperature T , and

e(v, p) – specific internal energy as a function of specific volume and pressure
e(s, p) – specific internal energy as a function of specific entropy and pressure
v(s, p) – specific volume as function of specific entropy and pressure

along with their respective partial derivatives.

Lastly, the following functions of, and partial derivatives with respect to, pressure p and
temperature T , at saturation condition are provided:

Tsat(p) – saturation temperature as a function of pressure
psat(T ) – saturation pressure as function of temperature
δhvap – heat of vaporization.
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3.3 Homogeneous Equilibrium Model (HEM)

As remarked in Section 3.1.11 and Section 3.2.1, the 7-equation two-phase model nat-
urally reduces to simpler models with appropriate relaxation. If mechanical relaxation,
in which pressure and velocity are relaxed to a single value, is performed the 5-equation
model of Kapila results. If, in addition, thermodynamic relaxation is performed, in which
temperatures and Gibb’s energies are relaxed to a single value, the 3-equation Homoge-
neous Equilibrium Model (HEM) is obtained. The HEM model is also know as the EVET
(Equal Velocity, Equal Temperature) model, wherein it is implied that the pressures are
equal and a saturated condition, which also implies that the Gibb’s energies for the liquid
and vapor phases are equal. The 3-equation HEM model is the simplest (at least from the
balance equation viewpoint) and oldest of the two-phase model hierarchy [66], however
some of its other properties, e.g. effective sound speed, are more difficult, and may even
exhibit discontinuities in transitions from single- to two-phase.

For some applications where the HEM representation is physically appropriate, it may
be more economical to begin with the 3-equation HEM model, rather than carrying the
additional expense of a relaxed 7-equation model. The 3-equation HEM model is included
also as a selectable model in RELAP-7. It is noted that a partially- or transitionally-
relaxed 7-equation model will be very useful for coupling of the spatial regions where
the unrelaxed 7-equation model is needed with spatial regions where the 3-equation HEM
model may be used.

3.3.1 Field Equations

In the HEM model, the two phases in the mixture are assumed to be in thermodynamical
and mechanical equilibrium and the pressure in the mixture is taken to be equal to the
saturation pressure. Consequently, the two-phase mixture is effectively treated as a single
(pseudo) fluid whose properties are suitable averages of the phasic properties of the indi-
vidual phases. The balance equations for HEM are the same as those for the single-phase
flow as shown in (20) through (23); but each primary variable now represents the state of
a homogeneous mixture of two phases. Therefore, the primary variables are denoted with
an overbar as ρ̄, ρu, ρE and ρs, where for example ρ̄ = (1−α)ρliq,sat(T )+αρvap,sat(T ) is
the mixture density and α is again the probability of presence (or volume fraction) of the
vapor phase.

In the RELAP-7 solution of the HEM model, the primary variables are solved with
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fully implicit time discretization and the vapor volume fraction is calculated with

α =
ρ̄− ρliq,sat(T )

ρvap,sat(T )− ρliq,sat(T )
(262)

where ρliq,sat(T ) and ρvap,sat(T ) are the saturated density of liquid and vapor respectively
for a given temperature T .

3.3.2 Constitutive Models

The same closure models are used for the HEM model as for the single-phase flow, such as
wall friction coefficients and convective heat transfer coefficients, except that the following
viscosity and thermal conductivity models are used:

µ̄ = µliq(1− α) + αµvap (263)
k̄ = kliq(1− α) + αkvap . (264)

The stiffened gas equation of state discussed above for the single-phase and 7-equation
two-phase model is used also for the HEM model.

4 Constitutive Models

4.1 Convective Heat Transfer

The wall heat source term Qwall in Equation (22) (which is a linear power term having
units [W/m]) in general can be composed of a number of sources:

Qwall =
∑
i

Qwall
i . (265)

In RELAP-7, a heat source Qwall
i can be specified from one of the following:

• a known wall temperature and wall heat transfer coefficient:

Qwall
i = hwall

i (Twall
i − T )Pi , (266)
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where hwall
i is the wall heat transfer coefficient associated with source i, Twall

i is
its wall temperature, and Pi is the perimeter of the wall surface bordering the flow
channel.

• a known wall heat flux:
Qwall
i = qwall

i Pi , (267)

where qwall
i is the heat flux of source i.

Often various closures, such as determination of various categories of flow regime, require
information of wall heat transfer quantities. Since these closures are not implemented on a
per-heat-source basis, single values should be computed to represent the sum heat source
for the flow channel. For instance, an aggregate heated perimeter is computed by summing
the individual heated perimeters:

Ptot =
∑
i

Pi . (268)

A single wall heat transfer coefficient value is computed by weighting by the heated
perimeter. Thus for single-phase flow,

h̄wall =
1

Ptot

∑
i

hwall
i Pi , (269)

and for two-phase flow,

h̄wall
k =

1

Ptot

∑
i

hwall
k,i Pi . (270)

RELAP-7 assumes that for a given flow channel, heat sources will come from source
only of the temperature type or only of the heat flux type, since a mixture of specifications
leads to some ambiguity in defining corresponding wall heat transfer coefficients. The
following subsections detail how relevant averages are computed in each case.

4.1.1 Temperature-Specified

The average wall temperature is computed to preserve total wall heat flux. For 1-phase
flow,

h̄wall(T̄wall − T )Ptot =
∑
i

hwall
i (Twall

i − T )Pi , (271)
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and rearranging gives

T̄wall = T +

∑
i

hwall
i (Twall

i − T )Pi

h̄wallPtot
. (272)

For 2-phase flow,

κ`h̄
wall
` (T̄wall − T`)Ptot + κvh̄

wall
v (T̄wall − Tv)Ptot

=
∑
i

κ`h
wall
`,i (Twall

i − T`)Pi +
∑
i

κvh
wall
v,i (Twall

i − Tv)Pi , (273)

and rearranging gives

T̄wall =

∑
i

κ`h
wall
`,i (Twall

i − T`)Pi +
∑
i

κvh
wall
v,i (Twall

i − Tv)Pi + (κ`h̄
wall
` T` + κvh̄

wall
v Tv)Ptot

(κ`h̄
wall
` + κvh̄wall

v )Ptot
.

(274)

4.1.2 Heat-Flux-Specified

Similarly to the temperature case, the average heat flux is defined to preserve the sum of
the heat source terms:

q̄wallPtot =
∑
i

qwall
i Pi . (275)

Rearranging gives the definition:

q̄wall =
1

Ptot

∑
i

qwall
i Pi . (276)

5 Numerical Methods

5.1 Spatial Discretization

5.1.1 Continuous Galerkin Finite Element Method

5.1.1.1 Formulation In this section, the continuous Galerkin finite element method
used for spatial discretization method of the governing partial differential equations of the
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7-equation two-phase model is briefly described. The temporal discretization and time in-
tegration used for this system will be described in the subsequent section. This discretized
system of RELAP-7 is implemented through the MOOSE multiphysics framework [5].
For conciseness, the system of equations is recalled here in more compact form by con-
sidering for the two phases, denoted by the subscript k and j, the following form:

∂tU + ∇·F (U) = N (U) + R (U) + S (U) + ∇·D(U)∇U (277)

where U = [(αA)k, (αρA)k, (αρuA)k, (αρEA)k, (αρA)j, (αρuA)j, (αρEA)j]
T is the

solution vector. The nomenclature has been abbreviated by using subscript k to denote the
liquid phase and subscript j to denote the vapor phase. The inviscid conservative Eulerian
fluxes are denoted F (U). N (U) contains the non-conservative differential terms (in-
cluding duct wall pressure force and Lagrangian fluxes). R (U) contains the mechanical
relaxation terms. The source vector S (U) contains the thermodynamic relaxation terms
(interphase mass, energy, and heat transfer), as well as the interphase friction, duct wall
friction, duct wall heat addition, body force (gravity) terms. These are given, respectively,
by:

F ≡



0
(αρuA)k

[α (ρu2 + p)A]k
[αu(ρE + p)A]k

(αρuA)j
[α (ρu2 + p)A]j
[αu(ρE + p)A]j


, N ≡



−Auint ·∇αk
0

αkpk∇A+ pintA∇αk
pintAuint ·∇αk

0
αjpj∇A+ pintA∇αj
pintAuint ·∇αj


,

R ≡



Aµ (pk − pj)
0

Aλ (uj − uk)
−p̄intAµ (pk − pj) + ūintAλ (uj − uk)

0
Aλ (uk − uj)

−p̄intAµ (pj − pk) + ūintAλ (uk − uj)


,
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and S(U) = [S1(U), S2(U), S3(U), S4(U), S5(U), S6(U), S7(U)]T , where

S1(U) =− Γint,jAintA

ρint
− Γwall,j

ρint
S2(U) =− Γint,jAintA− Γwall,j

S3(U) =− Γint,jAintuintA− Γwall,juint − F friction
wall,k − Ffriction,j − F form

k + (αρ)k Ag · n̂axis

S4(U) = + Γint,jAint

(
pint
ρint
−Hk,int

)
A+ Ainthconv,k(Tint − Tk)A+Qwall,k,conv

− Γwall,j

(
−pint
ρint

+ hj,int +
u2
int

2

)
+ (αρu)k Ag · n̂axis

S5(U) = + Γint,jAintA+ Γwall,j

S6(U) = + Γint,jAintuintA+ Γwall,juint − F friction
wall,j − Ffriction,k − F formj + (αρ)j Ag · n̂axis

S7(U) =− Γint,jAint

(
pint
ρint
−Hj,int

)
A+ Ainthconv,j(Tint − Tj)A+Qwall,j

+ Γwall,j

(
−pint
ρint

+ hj,int +
u2
int

2

)
+ (αρu)j Ag · n̂axis .

The non-physical dissipative flux terms are given by ∇·D(U)∇U. The viscous coeffi-
cients D (U) in these terms will be described later when discussing the entropy viscosity
method for stabilization of this hyperbolic equation system. In the equations above, and
in the finite element equations (278) to follow, a nomenclature (that is also useful for de-
scribing multidimensional systems) has been used wherein, for the quasi one-dimensional
systems of RELAP-7,∇ means ∂

∂x
.

To apply the continuous finite element method, Eq. (277) is multiplied by a test func-
tion W(r), integrated by parts and each integral is decomposed into a sum of spatial
integrals over the domain Ωe of each element e of the discrete mesh domain Ω. The fol-
lowing weak form is obtained:

R(U) ≡
∑
e

∫
Ωe

∂tU WdΩe −
∑
e

∫
Ωe

F(U) ·∇WdΩe +

∫
∂Ω

F(U) · nW

−
∑
e

∫
Ωe

(N(U) + R(U) + S(U)) WdΩe

+
∑
e

∫
Ωe

D(U)∇U ·∇WdΩe −
∫
∂Ω

D(U)∇U · nW = 0 . (278)
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The two boundary integral terms in (278), i.e.
∫
∂Ω

F(U) · nW and
∫
∂Ω
D(U)∇U ·

nW are evaluated at the boundaries of the domain and come from appropriate boundary
condition approximations. Appropriate physical boundary conditions for finite elements,
based upon, and consistent with, the method of characteristics will be discussed in the next
chapter. The integrals over the elements Ωe are evaluated using a numerical quadrature.
The MOOSE framework provides a wide range of test functions and quadrature rules.
Note that the test functionW is not chosen arbitrarily. In particular, it is required that W
come from the space of vector functions

W ∈


w0

0

 ,
0
w
0

 ,
0

0
w

 (279)

where w ∈ W is a scalar test function. In the present work, and in general practice, the
spaceW is taken to be (a subspace of) the Hilbert space H1(Ω). This choice, for instance,
guarantees enough smoothness that (278) makes sense. The approximate problem pro-
ceeds by selecting only test functions from a finite-dimensional subspace of W , denoted
by Wh, and which is spanned by the basis {φi}, i = 1, . . . , N . Linear Lagrange poly-
nomials are employed by RELAP-7 as test functions, from which second-order spatial
convergence is obtained for smooth solutions.

Remark: As the dissipative terms are added to the basic balance equation for the 7-equation
two-phase model purely for stabilization of the weak solution to the hyperbolic system, the
last boundary integral term of (278) is neglected. The stabilization is needed only for the
solution in the domain interior and not at the boundary points.

For the continuous Galerkin formulation of RELAP-7, the unknown functions of the
solution vector, U, are approximated in the same basis used for the test functions, i.e.

Uh
m(x, t) =

nnd∑
j=1

Um,j(t)φj(x) for m = 1, 2, · · · , 7 . (280)

where j = 1 is the first (terminal) node in the duct and j = nnd (number of nodes) is the
last (terminal) node in the duct. The coefficients Um,j(t) vary in time only, and comprise
the solution vector, (at each iteration) for each dependent variable Um and at each spatial
node j, of the system of equations. The system of so-called “semi-discrete” equations
resulting from the finite element procedure discussed above (they have been discretized
in space, but the temporal derivatives remain in continuous form) are, in this incomplete
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state, effectively a system of coupled ordinary differential equations (ODEs), which must
be integrated in time to obtain the solution. In Section 5.2 the various time discretization
methods employed in RELAP-7 to perform this temporal integration are discussed.

It is well-known that a continuous Galerkin discretization of this set of hyperbolic
equations is equivalent to a central finite difference method for a certain choice of integra-
tion rule, and therefore will exhibit oscillatory instabilities unless some artificial dissipa-
tion is added, as state previously, to stabilize the method. In Section 5.1.1.2, the stabiliza-
tion methods available in RELAP-7 are discussed, namely the entropy viscosity method
(5.1.1.2.1) used for both single- and two-phase flows, and the streamline upwind/Petrov-
Galerkin method (5.1.1.2.2) available only for single-phase flows in the present work.

5.1.1.2 Stabilization In review of solutions to nonlinear hyperbolic, initial-boundary
value problems such as the single- and two-phase equation systems of RELAP-7, it is
known that even with smooth initial data, the existence of a globally smooth solution may
be violated because of the nonlinearity of the flux functions and other nonlinear terms. The
concept of a weak solution is introduced to guarantee the existence of a global solution;
however, the uniqueness of the solution(s) is lost because the problem may allow infinitely
many weak solutions. An additional condition is usually imposed, which is called the
“entropy condition,” to select a unique solution from the infinitely many weak solutions.
The unique solution is called the “entropy solution.”

In the literature, although there are several different ways of defining the entropy con-
dition, they are all equivalent in the sense that they select the same entropy solution. For
numerical schemes, this entropy condition and solution is sought through utilization of
so-called conservative formulations of the physically descriptive equations along with
appropriate specification of an artificial viscosity, either added directly to the governing
equations or implied by the discretization employed. That is, a discretization scheme is
selected, or built, which is consistent with the entropy condition, thereby guaranteeing that
the numerical computation faithfully captures the physically relevant solution.

It is not easy to satisfy the somewhat contradictory objectives of capturing singularities
(like shocks or interfaces) without instability or numerical dispersion while also realizing
better resolution where the solution is smooth. Consequently, a plethora of schemes fill
the literature, all attempting to accomplish this, either better or more robustly. First order
Godunov upwind schemes are overly dissipative while sophisticated higher order meth-
ods, which are typically a nonlinear combination of first order dissipative schemes and
basic higher order schemes that are necessarily oscillatory, need to employ flux limiters to
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prevent unphysical oscillations. Even linear hyperbolic equation systems can be problem-
atic for numerical discretization schemes. For example, the well-known central difference
method generally produces oscillations for simple linear advection.

It is well-known that the continuous Galerkin finite element method, as described in
Section 5.1.1.1, is unstable when applied directly to hyperbolic systems of equations. It
attempts to approximate potentially nonlinear discontinuous solutions with continuous, δ-
mollified solutions as nearly as possible with the functional space selected and element
spacing chosen [79]. For certain finite element spaces and integration rules, the central
difference method and Galerkin finite element methods are equivalent. This spatial dis-
cretization is known to not produce sufficient entropy locally. To compensate, especially
for equations in conservative form, the method attempts to achieve this through a train of
entropy producing oscillations in the vicinity of the local entropy production deficit. For
example, this discretization exhibits oscillations when applied to convection-dominated
flows.

Remark: It is also pointed out that the first-order backward Euler time integration method
(BDF) described above is known to inherently introduce an excessiveO(∆t) artificial vis-
cosity through its discretization error. Thus its use is strongly discouraged for simulation
of transient flow phenomena.

Currently available options of solution stabilization for RELAP-7 application include
the entropy viscosity method (EVM), streamline upwind/Petrov- Galerkin method (SUPG),
Lapidus methodologies, and pressure-based stabilization methods. A selection of these
schemes are described in the following sections.

5.1.1.2.1 Entropy Viscosity Method As an available option, RELAP-7 employs a
new technique, introduced recently [80–83], which requires the explicit addition of artifi-
cial viscosity or dissipation terms to the equations while ensuring that the physical entropy
minimum principle remains satisfied. Most modern solvers for hyperbolic equation sys-
tems now use Godunov methods employing Riemann or approximate Riemann solvers
to capture the discontinuities, or shocks. However, both the methods of artificial viscos-
ity (either explicitly included by the addition of dissipation terms or implicitly included
through the inherent truncation error of the numerical scheme used) and Godunov meth-
ods are general shock capturing methods. The effect of either method is the introduction of
an appropriate amount of entropy into the flow [84]. With the artificial viscosity methods,
the entropy is added by the dissipation produced by the incorporated artificial viscosity.
On the other hand, with Godunov methods the entropy is primarily added implicitly by the
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presence of shock waves resulting from the Riemann problem. Actually, at least in those
cases when it can be found explicitly, the shock Hugoniot curve (i.e. the shock pressure
jump as a function of the shock velocity jump) closely resembles commonly used, early
forms of explicitly added artificial shock viscosity [85].

Under INL direction, the viscous regularization for the 7-equation two-phase model
of RELAP-7 was obtained by Delchini [86] at Texas A&M University, using the similar
methodology to that for the Euler equations. The method consists of adding dissipative
terms to the system of governing balance equations and in deriving an entropy equation
for the regularized system. By adequately selecting these artificial viscous fluxes, the sign
of the entropy production remains positive. Derivation of the viscous regularization for
the 7-equation two-phase model can be achieved by considering either the phasic entropy
equation or the total entropy equation. In the latter case, the minimum entropy principle
can be established for the whole two-phase system but may not ensure positivity of the
entropy equation for each phase. However, positivity of the total entropy equation can
also be achieved by requiring that the minimum entropy principle holds for each phase.
This stronger requirement has the advantage of ensuring consistency with the single-phase
Euler equations when one of the phases disappears in the limit of phase disappearance.
With the entropy viscosity method, the added viscous dissipation is controlled locally to
be effective only where discontinuities or wiggles occur in the solution. When a shock
is formed, entropy is produced, so this metric is utilized to locally increase the viscous
dissipation. However, other discontinuities, such as contact surfaces or volume fraction
discontinuities, do not produce entropy. These will be signaled to the artificial viscosity
controller by additional metrics such as the jump or change in a solution variable gradient.
Additional details regarding its application to the 7-equation two-phase model and to low
Mach number flows are directly based upon INL-sponsored research of Delchini [87].
This entropy viscosity method is independent of the spatial discretization employed, so
it can be used with the standard Galerkin, continuous Finite Element Method (FEM).
Though shown below for the 7-equation two-phase model, the entropy viscosity method
is available for use with single-phase flow systems as well.

The red terms in the balance equations for the non-equilibrium, 7-equation, two-phase
model summarized in Section 3.2.5, fk, gk, hk, and lk, with k = {liq, vap}, are the added
phasic viscous terms to be specified. The 7-equation model without the viscous regulariza-
tion terms is, by design, entropy producing. The 7-equation model with the regularization
terms must also be entropy producing. To verify the entropy production of the 7-equation
with regularization terms we therefore need only consider the regularization terms. The
phasic entropy equation with only the added regularization terms is
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αkρkA
Dksk
Dt

= [(ρsρ)k − (ese)k]
∂fk
∂x
− ρ2

k(sρ)k
∂lk
∂x

+ (se)k
∂
(
hk + 1

2
u2
kfk
)

∂x
+ (se)k (gk − fkuk)

∂uk
∂x

. (281)

where Dk(·)
Dt

is the phase k material derivative. Because the right hand side of this equation
must be greater than zero, by the minimum entropy principle, at a point where the entropy
sk (ρk, ek) reaches its minimum value, the gradient∇ρk,ek (sk) must be zero and the Lapla-
cian ∆ρk,ek (sk) must be positive; see e.g. [88]. It can be shown [89] that a way to ensure
this principle is to require

lk = βkA
∂αk
∂x

(282)

fk = αkκkA
∂ρk
∂x

+ ρklk (283)

gk = αkµkρkA
∂uk
∂x

+ fkuk (284)

hk = αkκkA
∂ (ρe)k
∂x

− u2
k

2
fk + (ρe)k lk (285)

where βk, µk, and κk are positive coefficients to be specified (note: the phasic, subscripted
parameter κk here is not to be confused with the un-subscripted variable κ appearing in
the total energy balance equations).

Because two-phase flows may be found in a wide range of speeds, from extremely low-
Mach subsonic (nearly incompressible) to supersonic, these three positive viscous coef-
ficients are designed, from the scaled 7-equation model to ensure well-scaled dissipative
terms over the entire range of Mach numbers of interest. When artificial viscosity tech-
niques are used, sufficient artificial viscosity must be present in the shock and discontinuity
regions to prevent spurious oscillations from forming in the numerical solution, but little
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or no dissipation should be present where the solution is smooth. It is also imperative that
viscosity coefficients scale properly to ensure recovery of the incompressible equations in
the low-Mach asymptotic limit. Careful analysis has resulted in the following definitions
for the viscous regularization coefficients:

βk (x, t) = min (βk,e (x, t) , βk,max (x, t)) (286)
µk (x, t) = min (µk,e (x, t) , µk,max (x, t)) (287)
κk (x, t) = min (κk,e (x, t) , κk,max (x, t)) (288)

where the definitions of the entropy viscosity coefficients with subscript e and the first-
order viscosity coefficients (ceiling values) with subscript max are given, respectively, by

βk,e (x, t) = h2max (|Rα
k (x, t) |, Jαk )

|sαk − s̄αk |∞
(289)

µk,e (x, t) = h2
max

(
|R̃k (x, t) |, Jk

)
(1− σ (Mk)) ρkw2

k + σ (Mk) ρku2
k

(290)

κk,e (x, t) = h2
max

(
|R̃k (x, t) |, Jk

)
ρkw2

k

(291)

βk,max (x, t) = µk,max (x, t) = κk,max (x, t) =
h

2
(|uk|+ wk) . (292)

In the above
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R̃k (x, t) =
Dkpk (x, t)

Dt
− w2

k (x, t)
Dkρk (x, t)

Dt
(293)

Rα
k (x, t) =

∂ (Ask)

∂t
+ Auint

∂sk
∂x

(294)

Jk = |uk| max
(
Je

[
∂pk
∂x

]
, w2

kJe

[
∂ρk
∂x

])
(295)

Jαk = |uint| Je
[
∂αk
∂x

]
(296)

and sαk denotes any entropy function of the volume fraction evolution equation, e.g. sαk =
1
2
α2
liq. Also, s̄αk denotes the average of sαk over the computational domain, i.e. s̄αk is a

function of time only. Note that sαk is not the same as the physical phasic entropies, sk
k = {liq, vap}. Je [·] denotes the hybrid elemental jump in function (·),

Je

[
∂a

∂x

]
= max

{∣∣∣∣s∂a∂x
{

1

∣∣∣∣ , ∣∣∣∣s∂a∂x
{

2

∣∣∣∣} (297)

where s
∂a

∂x

{

1

=

(
∂a

∂x

)
e

−
(
∂a

∂x

)
e−1

and s
∂a

∂x

{

2

=

(
∂a

∂x

)
e+1

−
(
∂a

∂x

)
e

.

with subscripts 1 and 2 representing the two node points for the (linear) element e. Thus,
Je
[
∂a
∂x

]
for generic variable a is constant over element e and has the same value for each

quadrature point, qp, in element e. In the equations above, h represents the element char-
acteristic size (for example, when considering a cell of volume V belonging to a mesh of
dimension r then h = V

1
r ).

In the denominator of the equation for µk,e above, the parametric function σ (Mk) is
a weighting function designed to change the normalization, and thus the local dissipation,
with varying flow Mach number; this parameter is important for the success of the entropy
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viscosity method for all-speed flows. To produce a stabilization method valid for a wide
range of Mach numbers, from very low-Mach to supersonic flows, the denominator of the
equation for µk,e above should vary between ρku2

k for non-isentropic flows and ρkw2
k for

low-Mach flows. These two scalings (denominator terms) are combined via a smoothed,
shifted Heaviside-type function, σ (Mk), to give a smooth transition between these two
states. One such function available in RELAP-7 (which varies smoothly between 0 and 1)
is the following [86]:

σ(M) =


0 if M ≤M thresh − a,
1 if M ≥M thresh + a,
1
2

(
1 + M−M thresh

a
+ 1

π
sin
(
π(M−M thresh)

a

))
otherwise,

(298)

where M thresh is a threshold Mach number value beyond which the flow is no longer con-
sidered to be low-Mach (default value isM thresh = 0.05),M is the local Mach number, and
the scalar a determines how rapidly the function σ(M) changes in the vicinity of M thresh

(default, a = 0.005). Both M thresh and a are, however, user specified inputs in RELAP-7.

This definition of the phasic viscosity coefficients takes advantage of the properties of
the entropy residual that is peaked in the vicinity of the shock, whereby the high-order
viscosity coefficient will saturate to the first-order viscosity coefficient that is known to be
over-dissipative. Moreover, in regions where the numerical solution is smooth, the phasic
viscosity coefficient will be equal to the high-order viscosity coefficient that will ensure
higher order accuracy and also the correct low-Mach asymptotic limit.

5.1.1.2.2 Streamline Upwind/Petrov-Galerkin Method The Streamline Upwind/Petrov-
Galerkin (SUPG) method is available in RELAP-7 for use with single-phase flows only.
The SUPG method is introduced by first writing (20)–(22) from Section 2.1 in system
notation as

R(V ) ≡ ∂V

∂t
+
∂G

∂x
− S = 0 (299)

where

V ≡

 ρA
ρuA
ρEA

 G ≡

 ρuA
(ρu2 + p)A
ρuHA

 (300)

and S comprises the remaining source (gravity, wall-heating, friction) terms. Note that
a slightly different notation for the area conserved variables, V , and flux, G, has been
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utilized because it will prove useful to refer to the non-area conserved variables in the
discussion which follows. As in Section 5.1.1.1, the weak form proceeds by dotting (299)
with an admissible test function W , integrating over the domain Ω, and applying the
divergence theorem. We then define

a(V ,W ) ≡
∫

Ω

(
∂V

∂t
·W −G · ∂W

∂x
− S ·W

)
dΩ +

∫
Γ

(G ·W ) n̂x dΓ (301)

for subsequent use. To introduce the SUPG method, we begin by defining the non-area
conserved variable and flux vectors

U ≡

 ρ
ρu
ρE

 F ≡

 ρu
ρu2 + p
ρuH

 . (302)

In particular, note that V = AU andG = AF . If F and U are continuous, the chain rule
can be used to write

∂F

∂x
=
∂F

∂U

∂U

∂x
≡ A∂U

∂x
. (303)

The matrixA is known as the “flux Jacobian” matrix. The identities

∂G

∂x
= A

∂F

∂x
+
∂A

∂x
F (304)

A
∂V

∂x
= A

(
A
∂U

∂x
+
∂A

∂x
U

)
= A

∂F

∂x
+
∂A

∂x
AU (305)

can be combined to eliminate the A∂F
∂x

terms and obtain

∂G

∂x
= A

∂V

∂x
+ (F −AU)

∂A

∂x
. (306)

Substituting (306) into (299) then gives

R̃(V ) ≡ ∂V

∂t
+A

∂V

∂x
+ (F −AU)

∂A

∂x
− S = 0 (307)

which is the so-called “quasi-linear” form of (299).

A few remarks about (307) are warranted. First, in the special case where F is a “ho-
mogeneous function of degree 1,” F = AU , and the term in (307) which is proportional
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to ∂A
∂x

vanishes. The flux F is a homogeneous function of degree 1 for the ideal gas equa-
tion of state, but not for equations of state in general. It is relatively straightforward to
show that

F −AU =

 0
p̂
up̂

 (308)

where

p̂ ≡ p− p,0ρ− p,1ρu− p,2ρE , (309)

and, for the one-dimensional Euler equations with a generic equation of state p = p(U0, U1, U2),
the partial derivatives are denoted p,i ≡ ∂p

∂Ui
, i = 0, 1, 2. For the stiffened gas equation of

state, we can use the partial derivatives discussed in Section 2.2.4.4 to compute p̂ = −γp∞.
Finally, we note that the two forms of the residual,R and R̃, coincide if the exact solution
V is smooth. Some solutions, e.g. with shocks, violate this assumption, but the SUPG
method is nevertheless still applicable in such situations. The SUPG method may now be
stated succinctly as: find V such that

a(V ,W ) +
∑
K

∫
ΩK

AT ∂W

∂x
· τSUPGR̃(V ) dΩK = 0 (310)

for all admissible W . In (310), AT is the transpose of the flux Jacobian matrix, τSUPG is
in general a 3 × 3 matrix of solution-dependent stabilization parameters, and the second
term of (310) is traditionally written as a sum of integrals over the finite elements ΩK

because of the possibility of higher-order derivatives in R̃, although there are no such
higher derivatives present in the current work. The method (310) is said to be “consistent”
in the following sense: if the true solution V (which satisfies (299) pointwise and the weak
form (301)) is smooth, then it also satisfies (307), and therefore the additional stabilizing
term is zero.

The “stabilizing” effects of (310) come specifically from the inviscid flux terms of the
quasi-linear residual (307), i.e.∫

ΩK

AT ∂W

∂x
· τSUPGR̃(V ) dΩK =

∫
ΩK

AT ∂W

∂x
· τSUPG

(
. . .+A

∂V

∂x
+ . . .

)
dΩK

=

∫
ΩK

∂W

∂x
·
(
AτSUPGA

∂V

∂x

)
dΩK + . . . (311)
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where the ellipsis are used to represent other terms in the quasi-linear residual which do
not lead to stabilization, but are nevertheless required for consistency. The matrix M ≡
AτSUPGA can be thought of as the “artificial diffusivity” tensor associated with the method.
Thus, a major design goal of the SUPG method is to pick τSUPG in such a way thatM is:

1. O(h) in size, so the scheme retains the Galerkin method’s order of accuracy.

2. Positive-definite, to mimic a physical diffusion tensor.

Most of the effort and “art” in implementing the SUPG method is therefore concerned
with choosing τSUPG appropriately. For advection-dominated one-dimensional systems
of conservation equations, Hughes et. al [90] have shown that a possible form for the
stabilization operator τSUPG is

τSUPG =
h

2
|A|−1 (312)

where h is element length, and the absolute value of aA is defined as

|A| ≡ P |D|P−1 (313)

where D is a diagonal matrix of eigenvalues of A and P is a matrix whose columns are
A’s eigenvectors. The absolute value of a diagonal matrix D is defined simply by taking
the absolute value of each of the entries on the diagonal. For the one-dimensional Euler
equations with a generic equation of state p = p(U0, U1, U2) having partial derivatives
p,i ≡ ∂p

∂Ui
, i = 0, 1, 2, we have:

A =


0 1 0

p,0 − u2 p,1 + 2u p,2

u (p,0 −H) up,1 +H u (1 + p,2)

 . (314)

The eigenvalues of the matrix defined in (314) are given by

λ1 = u (315)

λ2,3 = u+
p,1 + up,2

2
±
[
4 (p,0 + up,1 +Hp,2) + (p,1 + up,2)2]1/2

2
(316)

The eigenvalues (316) will be real (and hence the system will be hyperbolic) only if the
term under the square root sign is ≥ 0. It may be readily verified that, for a given equation
of state, (316) reduces to λ2,3 = u ± c, where c is the local sound speed. In general, the
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form (316) is preferred because it explicitly demonstrates the intrinsic role of the equation
of state in determining the eigenvalues ofA.

The matrix of eigenvectors ofA is given by

P ≡

 c1 c3 c2

λ1c1 λ2c3 λ3c2

1 1 1

 (317)

where

c1 ≡
−p,2

p,0 + λ1p,1
(318)

cj ≡
−λj
dj

, j = 2, 3 (319)

dj ≡ (H − u2)(up,2 − λj) + u(p,0 − u2) , j = 2, 3 . (320)

Its inverse is

P−1 ≡ 1

detP

λ2c3 − λ3c2 c2 − c3 c2c3(λ3 − λ2)
λ3c2 − λ1c1 c1 − c2 c1c2(λ1 − λ3)
λ1c1 − λ2c3 c3 − c1 c1c3(λ2 − λ1)

 (321)

where
detP ≡ c1(c2 − c3)λ1 + c3(c1 − c2)λ2 + c2(c3 − c1)λ3 . (322)

The preceding discussion provides all the information necessary to implement the
SUPG scheme (310). In addition to the code required to implement the Galerkin part
of the finite element method, one needs new code to define the stabilization matrix and
quasi-linear residuals, and code to assemble the new residual contributions. For effective
preconditioning and to implement solvers other than the JFNK method, one also needs to
compute Jacobian contributions for the new stabilization terms, but this procedure is not
discussed in detail here.

5.1.1.2.3 Pressure Gradient Stabilization Method RELAP-7 has two stabiliza-
tion schemes based on pressure, both described by Nithiarasu [91]. The first, titled “Method
II” in [91], uses the pressure gradient to indicate where artificial viscosity should be added,
whereas the second, titled “Method III” in [91], uses the Laplacian of pressure to indicate
where artificial viscosity should be added.
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Let the equation for solution component m of the two-phase system be denoted as

∂um
∂t

+∇ · fm(u) = sm(u) , (323)

where um denotes solution component m, u denotes the full solution vector, fm denotes
the flux function for solution component m, and sm is the source function for solution
component m. Adding a parabolic regularization term, the equation becomes

∂um
∂t

+∇ · fm(u) = sm(u) +∇ · (µ∇um) , (324)

where µ is a positive artificial viscosity coefficient, determined by the chosen artificial
dissipation method.

The pressure gradient stabilization scheme computes this artificial viscosity as

µ ≡ ζh2λmax
|∇p|
p

, (325)

where ζ is a user-defined tuning parameter, h is the mesh size, λmax is an estimate of the
maximum wave speed, and the pressure p in the denominator serves as a normalization for
the pressure gradient term. For the mass, momentum, and energy equations, the maximum
wave speed is estimated as λmax = |v| + c, and for the volume fraction, it is estimated as
λmax = |vI|, where vI is the interfacial velocity. Note that the artificial viscosity definition
above is comparable to a Lax-Friedrichs-type viscosity coefficient:

µLF ≡
1

2
hλmax , (326)

so the pressure-based method definition of the artificial viscosity coefficient can be viewed
as

µ = ζ̃ξµLF , (327)

where ζ̃ = 2ζ and ξ is a dimensionless artificial dissipation indicator or “switch”:

ξ ≡ h
|∇p|
p

. (328)

5.1.1.2.4 Pressure Curvature Stabilization Method The pressure curvature stabi-
lization scheme is the other pressure-based stabilization method described in Section 5.1.1.2.3.
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Instead of using the magnitude of the pressure gradient as the indicator for needing dissi-
pation, it uses the pressure Laplacian:

ξ ≡ h2 |∆p|
p

, (329)

so the artificial viscosity coefficient definition becomes

µ ≡ ζh3λmax
|∆p|
p

. (330)

To recover the Laplacian of pressure, L2-projection is used: the following equation is
added to the PDE system:

θ = ∆p , (331)

where θ is the L2-projection, which is what is used in the computation of µ. Testing this
equation with trial function i and integrating by parts gives

(θ, φi)Ω = −(∇p,∇φi)Ω + 〈∇p, φin̂〉∂Ω , (332)

and finally, dropping the boundary integral gives

(θ, φi)Ω = −(∇p,∇φi)Ω . (333)

5.1.2 Reconstructed Discontinuous Galerkin Finite Element Method

5.1.2.1 Introduction The class of reconstructed discontinuous Galerkin (rDG) meth-
ods, termed as PnPm schemes, were originally introduced by Dumbser et al. [92–94],
where Pn indicates that a piecewise polynomial of degree of n is used to represent a
discontinuous Galerkin (DG) solution, and Pm represents a reconstructed polynomial so-
lution of degree of m (m ≥ n) that is used to compute the fluxes. The PnPm schemes are
designed to enhance the accuracy of the DG method by increasing the order of the under-
lying polynomial solution. The beauty of the PnPm schemes is that they provide a unified
formulation for both the finite volume (FV) and DG methods, and contain both the clas-
sical cell-centered FV and standard DG methods as two special cases of PnPm schemes.
When n = 0, i.e., a piecewise constant polynomial is used to represent a numerical so-
lution, P0Pm is equivalent to the classical high-order FV schemes, where a polynomial
solution of degree m (m ≥ 1) is reconstructed from a piecewise constant solution. When
m = n, the reconstruction reduces to the identity operator, and the PnPn scheme yields
a standard DG method. Many variants of the original rDG methods have been developed
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in recent years, for example, the hybrid HWENO+DG schemes by Balsara et al. [95], the
least-squares reconstruction-based DG schemes by Luo et al. [96–98], and the class of
Green-Gauss reconstruction-based hybrid DG/FV schemes by Zhang et al. [99, 100]. All
of these schemes are able to improve the spatial accuracy of the underlying DG methods
without significant extra cost in storage and computing time. RELAP-7 uses a second-
order FV method variant from the PnPn schemes, namely rDG(P0P1) [101], as a spatial
discretization option.

5.1.2.2 Discretization The 1-D, variable-area Euler equations can be expressed as

∂u

∂t
+
∂f(u)

∂x
= s(u) , (334)

where f(u) is the advective (inviscid) flux vector, s(u) is the source vector, and u is the
conservative variable vector:

u =

 ρA
ρuA
ρEA

 (335)

where ρ denotes density, u denotes velocity,E denotes specific total energy, andA denotes
the cross-sectional area of the flow channel. The advective (inviscid) flux vector f(u) is
defined by

f(u) =

 ρuA
(ρu2 + p)A
u(ρE + p)A

 (336)

where p denotes pressure, which is given by an equation of state.

Integrating over each cell volume Vi gives∫
Vi

∂u

∂t
dV +

∫
Vi

∂f(u)

∂x
dV =

∫
Vi

s(u) dV . (337)

Let ui denote the cell-average value:

ui(t) ≡
1

|Vi|

∫
Vi

u(x, t) dV . (338)

Using the divergence theorem, the following equations can then be derived from Equation
(337):

|Vi|
dui
dt

+ f(u(xi+1/2))− f(u(xi−1/2)) =

∫
Vi

s(u) dV . (339)
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The approach for computing the fluxes will be described in subsequent sections.

5.1.2.3 Slope Reconstruction To achieve greater than first-order spatial accuracy, a
piecewise linear solution is reconstructed in a given cell. The reconstruction is performed
in terms of slopes of a set of primitive variables w = [p, u, T ]:

ui(x, t) = u(wi(x, t)) , (340)

wi(x, t) = wi(t) + (x− xi)∆wi(t) x ∈ (xi−1/2, xi+1/2) , (341)

where ∆wi denotes the vector of slopes for each of the primitive variables in cell i. To
prevent the formation of spurious oscillations in the numerical solution, slope limiters are
used to adjust the slopes: ∆wi →∆wi:

wi(x, t) = wi(t) + (x− xi)∆wi(t) x ∈ (xi−1/2, xi+1/2) , (342)

A few classic slope limiters, having the TVD (Total Variation Diminishing) property, will
be described. For a complete description of the TVD property and and slope limitation,
see [59]. Each of the slope limiters are component-wise, but the component subscript will
be omitted.

5.1.2.3.1 Minmod Slope Limiter The minmod slope limiter yields the following
slope:

∆wi = minmod
(
∆wi−1/2,∆wi+1/2

)
, (343)

where the one-sided slopes are defined as

∆wi+1/2 ≡
wi+1 − wi
xi+1 − xi

, (344)

and the minmod function is defined by

minmod(a, b) =


a if |a| < |b| and ab > 0 ,

b if |b| < |a| and ab > 0 ,

0 if ab ≤ 0 .

(345)

If a and b have the same sign, then this selects the one that is smaller in modulus, else it
returns zero. Rather than defining the slope on the ith cell by always using the downwind
difference (which would give the Lax–Wendroff method), or by always using the upwind
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difference (which would give the Beam–Warming method), the minmod method compares
the two slopes and chooses the one that is smaller in magnitude. If the two slopes have
different sign, then the value wi must be a local maximum or minimum, and it is easy
to check in this case that we must set ∆wi = 0 in order to satisfy the TVD condition.
The minmod method does a fairly good job of maintaining good accuracy in the smooth
hump and also sharp discontinuities in the square wave, with no oscillations. Sharper
resolution of discontinuities can be achieved with other limiters that do not reduce the
slope as severely as minmod near a discontinuity.

5.1.2.3.2 Superbee Slope Limiter The superbee slope limiter is computed as fol-
lows [102]:

∆wi = maxmod
(

∆w
(1)

i ,∆w
(2)

i

)
, (346)

where
∆w

(1)

i = minmod
(
∆wi+1/2, 2∆wi−1/2

)
(347)

∆w
(2)

i = minmod
(
2∆wi+1/2,∆wi−1/2

)
. (348)

Each one-sided slope is compared with twice the opposite one-sided slope. Then the
maxmod function in Equation (346) selects the argument with larger modulus. In regions
where the solution is smooth this will tend to return the larger of the two one-sided slopes,
but will still be giving an approximation, and hence we expect second-order accuracy. The
superbee limiter is also TVD in general.

With the superbee method, the discontinuity stays considerably sharper than with the
minmod method. On the other hand, there is a tendency of the smooth hump to be-
come steeper and squared off. This is sometimes a problem with superbee: by choosing
the larger of the neighboring slopes it tends to steepen smooth transitions near inflection
points.

5.1.2.3.3 MC Slope Limiter The monotonized central-difference (MC) slope lim-
iter, which was proposed by van Leer [103], is computed as follows:

∆wi = minmod
(
∆wi, 2∆wi−1/2, 2∆wi+1/2

)
, (349)

where the central-difference slope is computed as

∆wi ≡
wi+1 − wi−1

xi+1 − xi−1

. (350)
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This compares the central difference of Fromm’s method with twice the one-sided slope to
either side. In smooth regions this reduces to the centered slope of Fromm’s method and
hence does not tend to artificially steepen smooth slopes to the extent that superbee does.
The MC limiter appears to be a good default choice for a wide class of problems.

5.1.2.4 Numerical Flux This section describes how the fluxes in Equation (339) are
approximated. Simply evaluating the flux with the reconstructed solution at the interface
would result in linear instability; to avoid this, the fluxes are evaluated with an approximate
Riemann solver, which computes the approximate flux resulting in a Riemann problem
with the adjacent values being used as the left and right initial conditions:

f(u(xi+1/2)) ≈ Ai+1/2{
(

1

Ai+1/2

ui,R,
1

Ai+1/2

ui+1,L, ni,i+1

)
, (351)

ui,R ≡ ui(xi+1/2) , ui,L ≡ ui(xi−1/2) , (352)

where Ai+1/2 is the cross-sectional area at the interface between cells i and i+ 1, ni,i+1 is
the normal vector in the direction of cell i+1 from cell i, and { is a numerical flux function,
which here will be the HLLC approximate Riemann solver, described in Section 5.1.2.4.1.
Note that the cross-sectional area Ai+1/2 appears outside the flux function because it is
assumed that the area is continuous at the interface. With this assumption, area drops out
of this formulation, and a flux function for a 1-D (non-variable-area) formulation can be
used without modification.

If cell i is a boundary cell, then the exterior side value (ui,R for the right boundary cell,
ui,L for the left boundary cell) is a ghost cell value generated from boundary data, if any.

5.1.2.4.1 Explicit HLLC Riemann Solver The explicit form of the HLLC flux
function [104], which computes a flux given a left state uL and a right state uR, is defined
by

{ (uL,uR,n) =


fL if SL > 0

f∗L if SL ≤ 0 < SM

f∗R if SM ≤ 0 ≤ SR

fR if SR < 0

, (353)

where the supersonic fluxes are

fK ≡ f(uK)nx =

 (ρu)Knx
(ρu2 + p)Knx

((ρE + p)u)Knx

 , (354)
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and the subsonic fluxes are

f∗K ≡ f(u∗K)nx , u∗K =

 ρ∗K
(ρu)∗K
(ρE)∗K

 . (355)

It is assumed that the star-state values for pressure and velocity are equal on the left and
right:

p∗L = p∗R = p∗ , (356)
u∗L = u∗R = u∗ . (357)

The wave speeds SL and SR are given in Section 5.1.2.4.3, and the middle wave speed SM
is assumed to be equal to the normal component of the star-state velocity:

SM = u∗nx . (358)

Applying Rankine-Hugoniot conditions to the Rankine-Hugoniot conditions for mass and
momentum equations gives the definition of the star-state pressures:

p∗K = ρK(qK − SK)(qK − SM) + pK , (359)

where qK denotes the normal component of velocity:

qK = uKnx , (360)

where nx is the x-component of the normal vector going from state “L” to state “R”;
normally, nx = 1, but the arguments for uL and uR could be switched when passed into
the numerical flux function, in which case nx = −1.

Then combining this with the assumptions given by Equations (356), (357), and (358)
gives the middle wave speed:

SM =
ρRqR(SR − qR)− ρLqL(SL − qL) + pL − pR

ρR(SR − qR)− ρL(SL − qL)
. (361)

Putting everything together gives the star-state solutions:

u∗K =

 ρ∗K
(ρu)∗K
(ρE)∗K

 = ΩK

 (SK − qK)ρK
(SK − qK)(ρu)K + (p∗ − pK)nx

(SK − qK)(ρE)K − pKqK + p∗SM

 , (362)

where
ΩK ≡

1

SK − SM
, (363)

and the subsonic fluxes are

f∗K =

 ρ∗KSM
(ρu)∗KSM + p∗nx
((ρE)∗K + p∗)SM

 . (364)
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5.1.2.4.2 Implicit HLLC Riemann Solver For the implicit scheme, we need to
evaluate the Jacobian of the numerical flux function. To avoid re-evaluation of the Jacobian
for each nonlinear iteration, instead computing it only once per time step, the Jacobian is
evaluated at the old time:

{(uL,uR,n) =



fnL +

(
∂fL
∂uL

)n
∆uL if SL > 0

(f∗L)n +

(
∂f∗L
∂uL

)n
∆uL +

(
∂f∗L
∂uR

)n
∆uR if SL ≤ 0 < SM

(f∗R)n +

(
∂f∗R
∂uL

)n
∆uL +

(
∂f∗R
∂uR

)n
∆uR if SM ≤ 0 ≤ SR

fnR +

(
∂fR
∂uR

)n
∆uR if SR < 0

(365)

where ∆uK ≡ un+1
K − unK and the flux derivatives are shown later in this section.

In addition to freezing the Jacobian at the old time, the acoustic wave speeds SL and SR
are frozen as done by Batten et al. [104], which was shown to be have robust convergence
for smooth flows. In this section, terms will be derived as if this assumption has not been
made, but the terms that cancel out with this assumption will be highlighted.

Many equations are symmetric with respect to the subscripts L and R; in these cases
the subscript K is used to represent either subscript. The subscript J is also a generic
subscript that can either be taken to mean either both L and R or the opposite of K,
depending on the context.

The derivatives of the supersonic fluxes are computed as follows:

∂f

∂u
= nx



0 1 0

−u2 +
∂p

∂ρ
2u+

∂p

∂ρu

∂p

∂ρE

−u
ρ

(ρE + p) + u
∂p

∂ρ

1

ρ
(ρE + p) + u

∂p

∂ρu
u

(
1 +

∂p

∂ρE

)

 . (366)
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For the subsonic case, the HLLC Jacobian matrices are given by

∂f∗K
∂uJ

=



∂ρ∗K
∂uJ

SM +
∂SM
∂uJ

ρ∗K

∂(ρu)∗K
∂uJ

SM +
∂SM
∂uJ

(ρu)∗K +
∂p∗

∂uJ
nx(

∂(ρE)∗K
∂uJ

+
∂p∗

∂uJ

)
SM +

∂SM
∂uJ

((ρE)∗K + p∗)


, (367)

where in this context, J is taken to mean either L or R.

The SM derivatives are computed as follows:

SM =
A

B
, (368a)

A = ρRqR(SR − qR)− ρLqL(SL − qL) + pL − pR , (368b)

B = ρR(SR − qR)− ρL(SL − qL) , (368c)

∂SM
∂uK

=
1

B

∂A

∂uK
− A

B2

∂B

∂uK
, (369)

∂A

∂uK
=
∂(ρq)R
∂uK

(SR − qR) + (ρq)R

(
∂SR
∂uK

− ∂qR
∂uK

)

− ∂(ρq)L
∂uK

(SL − qL)− (ρq)L

(
∂SL
∂uK

− ∂qL
∂uK

)
+
∂pL
∂uK

− ∂pR
∂uK

, (370)

∂B

∂uK
=
∂ρR
∂uK

(SR − qR) + ρR

(
∂SR
∂uK

− ∂qR
∂uK

)

− ∂ρL
∂uK

(SL − qL)− ρL

(
∂SL
∂uK

− ∂qL
∂uK

)
. (371)

The derivatives of the star-state pressure can be expressed as the following, where J de-
notes the subscript of the opposite of K:

∂p∗

∂uK
= ρJ(SJ − qJ)

∂SM
∂uK

+ ρJ(SM − qJ)
∂SJ
∂uK

, (372)
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The remaining derivatives are the following, where J denotes either L or R:

∂ρ∗K
∂uJ

=
∂ΩK

∂uJ
(SK − qK)ρK + ΩK

(
∂SK
∂uJ

− ∂qK
∂uJ

)
ρK + ΩK(SK − qK)

∂ρK
∂uJ

, (373)

∂ΩK

∂uJ
= − 1

(SK − SM)2

(
∂SK
∂uJ

− ∂SM
∂uJ

)
, (374)

∂(ρu)∗K
∂uJ

=
∂ΩK

∂uJ
((SK − qK)(ρu)K + (p∗ − pK)nx)

+ ΩK

((
∂SK
∂uJ

− ∂qK
∂uJ

)
(ρu)K + (SK − qK)

∂(ρu)K
∂uJ

+

(
∂p∗

∂uJ
− ∂pK
∂uJ

)
nx

)
, (375)

∂(ρE)∗K
∂uJ

=
∂ΩK

∂uJ
((SK − qK)(ρE)K − pKqK + p∗SM)

+ΩK

((
∂SK
∂uJ

− ∂qK
∂uJ

)
(ρE)K + (SK − qK)

∂(ρE)K
∂uJ

− ∂pK
∂uJ

qK − pK
∂qK
∂uJ

+
∂p∗

∂uJ
SM + p∗

∂SM
∂uJ

)
,

(376)

∂qK
∂uK

= nx

−
(ρu)K
ρ2
K

1
ρK

0

 . (377)

5.1.2.4.3 Wave Speed Estimates This section describes how the wave speeds SL
and SR can be estimated. Following Einfeldt et al. [105],

SL = min (λ1(uL), λ1(û)) , (378)

SR = max (λ3(û), λ3(uR)) , (379)

where λ1(u) and λ3(u) are the smallest and largest eigenvalues of the normal flux Jacobian
matrix:

λ1(u) = unx − c λ3(u) = unx + c , (380)

and û is the Roe-averaged state [106], in which u and c are computed as follows:

ρ̂ =
√
ρLρR , (381)
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û =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

, (382)

Ĥ =

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

, (383)

ĥ = Ĥ − 1

2
û2 , (384)

v̂ =
1

ρ̂
, (385)

ĉ = c(v̂, ĥ) , (386)

where c(v, h) represents a call to the equation of state interface.

5.2 Temporal Discretization

RELAP-7, through MOOSE, supports a number of standard implicit time integration
methods such as the backward Euler (Section 5.2.1) and BDF2 (Section 5.2.2) methods.

5.2.1 Backward Euler

The backward Euler method [107] is a well-known, first-order, A-stable implicit time
integration method. Given a generic semi-discrete equation in a form similar to equations
(278) with (280), ∫

Ω

(
∂uh

∂t
+G(uh)

)
φi dΩ = 0 (387)

the backward Euler method results in the temporal discretization∫
Ω

(
un+1 − un

∆t
+G(un+1)

)
φi dΩ = 0 (388)

where ∆t is the timestep, tn+1 = tn + ∆t, and un ≡ uh(tn) is a shorthand notation used
to refer to the finite element solution at time level n. Equation (388) is a fully-discrete
(possibly nonlinear) equation which must be satisfied for each i.
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Note that the backward Euler method, when applied to the linear convection equation

∂u

∂t
+ a

∂u

∂x
= 0 (389)

yields a leading-order truncation error term of the form

∂u

∂t

∣∣∣∣
tn+1

=
un+1 − un

∆t
+

∆t

2

∂2u

∂t2

∣∣∣∣
tn+1

+O(∆t2)

=
un+1 − un

∆t
+
a2∆t

2

∂2u

∂x2

∣∣∣∣
tn+1

+O(∆t2) (390)

where (390) follows from differentiating the continuous equation (389) with respect to
time:

∂2u

∂t2
= −a ∂

∂t

(
∂u

∂x

)
= −a ∂

∂x

(
∂u

∂t

)
= −a ∂

∂x

(
−a∂u

∂x

)
= a2∂

2u

∂x2
. (391)

Rearranging terms in (390) and adding a∂u
∂x

to both sides allows us to write

un+1 − un

∆t
+ a

∂u

∂x
=
∂u

∂t
+ a

∂u

∂x
− a2∆t

2

∂2u

∂x2
+O(∆t2) (392)

where all the continuous derivatives are assumed to be evaluated at time level tn+1. Thus,
the semi-discrete form of the linear convection on the left-hand side of (392) is equal to the
continuous parabolic partial differential equation on the right-hand side, which includes
“artificial” diffusion of O(a

2∆t
2

), to within O(∆t2). For this reason, we often say that
the backward Euler time discretization is inherently stabilizing for the hyperbolic equa-
tion (389). Obviously, the artificial viscosity for the complete scheme is a composite of
the artificial viscosity of both the time and spatial discretization.

The backward Euler time integration method should only be used for transients with
RELAP-7 as an initial scoping calculation, or if only the steady-state solution is of inter-
est. For accurate transient solutions with RELAP-7, the BDF2 time integration method,
described next, is highly recommended because it is a second-order (in time) discretiza-
tion.

5.2.2 BDF2

The backward differentiation formula (BDF) is a family of implicit methods for numer-
ically integrating ordinary differential equations. Some notable members of this family
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include BDF1, which is equivalent to the backward Euler [108] method discussed in Sec-
tion 5.2.1, and BDF2, which is the highest-order BDF method which is still A-stable. For
fixed step-size ∆t, the BDF2 method applied to the ordinary differential equation

∂u

∂t
= f(t, u) (393)

u(t = 0) = u0 (394)

yields the update step:

un+1 =
4

3
un − 1

3
un−1 +

2

3
∆tf(un+1, tn+1) (395)

Dividing through by 2
3
∆t, equation (395) can be alternatively written as

3
2
un+1 − 2un + 1

2
un−1

∆t
= f(un+1, tn+1) (396)

The left-hand side of (396) can be interpreted as a backward-difference approximation to
the continuous time derivative ∂u

∂t
, and may be employed in a manner analogous to (388)

to derive a fully-discrete system of equations:∫
Ω

( 3
2
un+1 − 2un + 1

2
un−1

∆t
+G(un+1)

)
φi dΩ = 0 (397)

based on the semi-discrete equations (278) with (280).

The second-order, backward difference temporal integrator BDF2 can be generalized
for time varying time-step sizes. By considering three consecutive solutions, un−1, un

and un+1, at times tn−1, tn and tn+1, respectively, the temporal derivative above can be
expressed with BDF2 as:∫

Ω

∂tuφi =

∫
Ω

(
ω0u

n+1 + ω1u
n + ω2u

n−1
)
φi , (398)

with

ω0 =
2∆tn+1 + ∆tn

∆tn+1 (∆tn+1 + ∆tn)
(399)

ω1 = −∆tn+1 + ∆tn

∆tn+1∆tn
(400)

ω2 =
∆tn+1

∆tn (∆tn+1 + ∆tn)
(401)
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where ∆tn = tn − tn−1 and ∆tn+1 = tn+1 − tn.

Notice that because BDF2 requires two old timesteps, the method must be employ a
single step method, such as backward Euler, for the first time-step when starting. The
BDF2 method is recommended for most transient simulations with RELAP-7.

5.3 Jacobian-Free Newton Krylov Solver

The RELAP-7 code solves coupled multi-physics problems using the Jacobian-Free New-
ton Krylov (JFNK) approach via the MOOSE framework. Field equations solved in
the current RELAP-7 code include PDEs to describe one-dimensional fluid flow in pipe
systems and heat conduction in solids, as well as ODEs to describe physics in zero-
dimensional components and the point kinetics equations.

The JFNK method is a fully-coupled, multi-level method for solving large nonlinear
equation systems. In general, it consists of at least two levels: the outer Newton loop for
the nonlinear solve and the inner Krylov loop for the linear systems of equations associated
to Newton iteration. The JFNK method has become an increasingly popular option for
solving large nonlinear equation systems arising from multi-physics problems over the
last 20 years, and has branched out into a number of different disciplines [7].

In what follows, a brief description of the JFNK method as it applies to the RELAP-7
application is given. The FEM-discretized field equations (Equations (278) with suitable
time, and viscous stabilization, discretizations) are first written as

F(u) = 0 (402)

where F represents the nonlinear equation system and u is the solution vector. Newton’s
method requires an initial guess, u0, computed either from the initial conditions or the
previous time-step solution, to start the iteration process. For the transient problems of
interest here, the solution at a previous time step is generally used as the initial guess for
the method. At the kth iteration, the residual vector is defined as

rk ≡ F(uk) . (403)

Clearly if uk satisfies (402) exactly, the kth residual will be zero. To update the solution
vector, the following equation is solved for the update vector, δuk+1:

J(uk)δuk+1 = −rk (404)
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where J(uk) is the Jacobian matrix evaluated at uk. In index notation,

Ji,j ≡
∂Fi
∂uj

. (405)

After δuk+1 is obtained, the (k + 1)st solution iterate is computed by

uk+1 = uk + δuk+1 . (406)

The Newton iteration is terminated when one of the following conditions is met:

1. The residual vector norm, |rk|, is sufficiently small.

2. The relative residual vector norm |rk|
|r0| is sufficiently small.

3. The step size norm, |δuk+1| is sufficiently small.

Note that (404) represents a large linear system of equations. In the JFNK method,
we need not explicitly form the matrix J : only its action on a vector (via matrix-vector
product) is required. Effective preconditioning is generally required for Krylov subspace
methods to be efficient, i.e., for the method to converge in a reasonable number of it-
erations. A preconditioned version of equation (404) can be expressed as (using right
preconditioning as an example),

JkP−1
(
P δuk+1

)
= −rk (407)

where P is the preconditioning matrix. In the approach current used in RELAP-7, an
analytical Jacobian matrix is computed according to (405), and passed to the underlying
numerical solver library as the matrix P for preconditioning purposes.

6 Boundary Conditions

For convenience, or of necessity, governing balance equations are usually solved over a
finite, bounded spatial domain. However, from a physical point of view the domain is
usually not really bounded. There is some physical object or material beyond the fixed
domain with which the material within the domain of interest has some interaction. To
represent the physical effects, at least partially, of the entities beyond the domain of inter-
est upon the the material within the domain, so called boundary conditions are introduced.
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These boundary conditions must supply adequate information to fulfill both the mathe-
matical needs of the governing balance equations solved within the domain and also to
adequately represent the physical effects of the entities beyond the domain. It is empha-
sized that sometimes the approximations inherent in these boundary conditions adversely
effects the solution of the governing balance equations. When this occurs, the domain
should be modified, if possible, so that the boundary conditions can be placed where the
effects of their approximate nature will be minimized.

Because the governing two-phase flow equations used in RELAP-7 are hyperbolic, the
boundary conditions that will be specified must be consistent with the method of charac-
teristics [1], [109], [110]. For a single-phase, one-dimensional flow with variable cross-
sectional areaA(x), method of characteristics theory shows that solution information prop-
agates along three characteristic, or wave, directions dx

dt
and that the solution at any point

in time and space is constructed from the characteristic information carried by the three
characteristic waves convergent at that point. One wave carries its charcteristic informa-
tion, propagating at the material velocity, dx

dt
= u. The other two characteristic waves

travel, carrying their characteristic information, at acoustic or sound speed, w, relative to
the flowing material, i.e. dx

dt
= u + w and dx

dt
= u − w. The three characteristic equa-

tions which carry the solution information and their respective characteristic directions in
(x, t)− space are

dp+ ρw du = F1 dt along
dx

dt
= u+ w (408)

dp− ρw du = F2 dt along
dx

dt
= u− w (409)

dρ− 1

w2
dp = F3 dt along

dx

dt
= u , (410)

where the source terms F1, F2, and F3 are generally functions of the fluid’s thermody-
namic state, the flow’s cross-sectional area A(x) and its gradient A′(x), flow velocity u,
the fluid’s specific heat at constant pressure cp along with its coefficient of volume expan-
sion −1

ρ
( ∂ρ
∂T

)p, the external heat transfer to/from the fluid, and the pipe wall friction factor.
The first two characteristics listed above are acoustic and, for subsonic flows, are some-
times referred to as right running and left running characteristics, respectively. The third
characteristic listed above is referred to, for obvious reasons, as the material motion, par-
ticle path, or entropic characteristic. For the 7-equation two-phase model, seven of these
characteristic equations and characteristic directions occur. Six of the seven characteristic
equations are basically comprised of a set of three characteristics, similar to those above,
for each of the two phases. The seventh characteristic equation and direction corresponds
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to the volume fraction evolution equation. It specifies how the (liquid) volume fraction
will change along the characteristic wave traveling with velocity dx

dt
= uint. Thus, for the

7-equation two-phase model the characteristics are

dpliq + (ρw)liq duliq = F1 dt along
dx

dt
= (u+ w)liq (411)

dpliq − (ρw)liq duliq = F2 dt along
dx

dt
= (u− w)liq (412)

dρliq −
1

w2
liq

dpliq = F3 dt along
dx

dt
= uliq (413)

dpvap + (ρw)vap duvap = F4 dt along
dx

dt
= (u+ w)vap (414)

dpvap − (ρw)vap duvap = F5 dt along
dx

dt
= (u− w)vap (415)

dρvap −
1

w2
vap

dpvap = F6 dt along
dx

dt
= uvap (416)

dαliq = F7 dt along
dx

dt
= uint , (417)

where now the functions Fj , j = 1, · · ·, 7, depend (in addition to those dependencies give
above for single phase) also upon all of the interphase interaction terms.

At points on domain boundaries, it often occurs, e.g. for single phase flow, that less
than three of the waves propagate their characteristic information to the boundary point.
The information that does come from the characteristic waves propagating from the do-
main interior must be utilized to form the solution at the boundary. The additional infor-
mation necessary to obtain the solution at the boundary must be supplied by appropriate
boundary condition equations that approximate the physical and mathematical effect of the
truncated material or fluid. Detailed discussion of the method of characteristics is beyond
our scope here, but the parts of characteristic theory that will be employed will be apparent.
RELAP-7 uses a continuous finite element method to numerically construct the solution
for the governing two-phase flow equations. The elemental equations for the element adja-
cent to the boundary, in a sense, supplies all of the same information that the characteristic
equations that propagate to the boundary from the domain interior provides. These finite
element equations are also deficient, and must be supplimented with additional boundary
condition information. There is, however, one caviat. The finite element equations are in
an implicit form, i.e. they have a so called mass matrix which must be inverted, usually
iteratively, to obtain the solution. So with some care, at each iterate the correct charac-
teristic information will be extracted from the incomplete finite element equations for the
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element adjacent to the boundary, and combined with the appropriate boundary condition
equations to compute the complete boundary solution or flux approximation for the next
iterate. Upon numerical convergence, the complete finite element solution at the boundary
nodel will be consistent with both the characteristic information propagating to the bound-
ary from the domain interior and the correctly specified boundary condition equations.

In the ensuing development, the following nomenclature is used: subscript 1 or nnd on
a variable denotes the elemental value of the variable at the terminous node (i.e. the first
or last node) denoted with the subscript for the current solution iterate, subscript bc on a
variable denotes a supplied boundary condition value, and superscript ∗ denotes a generic
value of the variable at the boundary node. For each of the boundary conditions given, a
detailed discription will first be given for single-phase flow, then in somewhat more terse,
but concise, form for the 7-equation two-phase flow.

6.1 Closed End, Single-Phase

Perhaps the simplest boundary condition is that of a closed end, dead-end, or wall bound-
ary condition. At a closed end the governing physics is that there can be no flow through
the boundary, i.e. uboundary = 0. To begin this description, assume that the closed end or
wall boundary condition is located at the right, terminal end of a duct at its last node, num-
bered nnd. Subscript nnd on a variable will denote the finite element solution value of
the variable at that boundary node of the duct for the current solution iterate. Superscript
∗ denotes a generic value of the variable at the boundary node. From the method of char-
acteristics it is known that the material motion, particle path, or entropic characteristic
from the domain interior requires either

ρ∗ = ρnnd

or
p∗ = pnnd

while the right running acoustic characteristic from the domain interior requires either

u∗ = unnd

or
p∗ = pnnd .
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Futhermore, this is the only information that can be used from the solution’s domain in-
terior. But because the physical no-flow end condition unnd = ubc = 0 is specified, this
forces the following choice:

ρ∗ = ρnnd (fromnodal solution iterate) (418)
p∗ = pnnd (fromnodal solution iterate) (419)
u∗ = 0.0 (specified boundary condition) . (420)

To get pnnd, the mass density and specific internal energy ennd for the current solution
iterate must first be determined from the element nodal conservative variables

ρnnd =
(ρA)nnd
Annd

(421)

ennd =
(ρEA)nnd
(ρA)nnd

− 1

2

(ρuA)2
nnd

(ρA)2
nnd

(422)

and then from the equation of state

pnnd = p(vnnd, ennd) (423)

where the specific volume is the reciprical of mass density, vnnd = 1
ρnnd

. For a weakly
specified element boundary, boundary fluxes are set for node nnd as

(Fρ)nnd = ρnndubcAnnd = 0 (424)
(Fρu)nnd = ρnndu

2
bcAnnd + pnndAnnd = pnndAnnd (425)

(FρE)nnd = ρnndubcAnnd[ennd +
pnnd
ρnnd

+
1

2
u2
bc] = 0 . (426)

Thus the nodal fluxes depend implicitly upon the current element nodal solution iterate
(which provides characteristic information from the domain interior) and the supplied
boundary condition information (which replaces the “missing” characteristic information).
Solution with finite element methods are typically iterative. Even for explicit time inte-
gration, because of the necessity to invert the mass matrix, iteration is often used. Upon
iterative convergence, the finite element boundary node variables will be consistent with
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the characteristic information from the domain interior and the specified boundary condi-
tion unnd = (ρuA)nnd

(ρA)nnd
≈ 0.

Remark: If so called mass lumping (in which the mass matrix is diagonalized) is used
with explicit time itegration, iteration will not be performed, and the nodal information
from the domain interior will need to be replaced with approximations to the actual char-
acteristic equations. This same remark applies to all of the boundary conditions described
in this chapter regarding the use of characteristic information.

Alternatively, instead of a weak boundary condition for the momentum equation, i.e.
the specification of (Fρu)nnd, a Dirichlet or strongly specified boundary condition could
be specified for the momentum equation. In this case, the momentum flux boundary con-
dition (only) would be replaced by the condition

Residual(ρuA)nnd = (ρuA)nnd − (ρ)nndubcAnnd

which upon iterative convergence, i.e Residual(ρuA)nnd ≈ 0, gives (ρuA)nnd ≈ 0 because
of the specification ubc = 0. Thus the two methods of setting a closed end boundary
condition are equivalent to within iterative convergence tolerance. It is emphasized that,
in this case, the weak boundary conditions (flux specification) are still used for the mass
and total energy balance equations.

If the closed end boundary condition is specified for the other end of the pipe, i.e. node
1, the the exact procedure above is mirrored and the fluxes for a weakly specified boundary
are

(Fρ)1 = ρ1ubcA1 = 0 (427)
(Fρu)1 = ρ1u

2
bcA1 + p1A1 = p1A1 (428)

(FρE)1 = ρ1ubcA1[e1 +
p1

ρ1

+
1

2
u2
bc] = 0 (429)

with

ρ1 =
(ρA)1

A1

(430)

e1 =
(ρEA)1

(ρA)1

− 1

2

(ρuA)2
1

(ρA)2
1

(431)
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and again from the equation of state

p1 = p(v1, e1) . (432)

6.2 Closed End, Two-Phase

The closed end boundary condition for the nonequilibrium 7-equation two-phase model is
very much similar to its single-phase counterpart described above. Because the 7-equation
model has a special eigenstructure in which three of the seven eigenvalues are identical to
those of liquid single phase and another three are identical those of the vapor phase, the
method described above can be duplicated for each of the two phases. The characteristic
equation due to the seventh eigenvalue, uint, is satisfied from the element interior equation.

To make the notation lucid, another subscript is added to denote the phase or interface
values. The physical no-flow boundary condition for the closed end with the 7-equation
model is unnd,liq = unnd,vap = ubc = 0. This forces the choice

ρ∗liq = ρnnd,liq (fromnodal solution iterate) (433)

ρ∗vap = ρnnd,vap (fromnodal solution iterate) (434)

p∗liq = pnnd,liq (fromnodal solution iterate) (435)

p∗vap = pnnd,vap (fromnodal solution iterate) (436)

u∗liq = 0.0 (specified boundary condition) (437)

u∗vap = 0.0 (specified boundary condition) . (438)

Thus, the phasic nodal variables ρnnd,k and ennd,k, with k = {liq, vap}, for the current
solution iterate are first determined from the current iterate of elemental nodal variables
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ρnnd,liq =
(αρA)nnd,liq
(αA)nnd,liq

(439)

ρnnd,vap =
(αρA)nnd,vap
(αA)nnd,vap

(440)

ennd,liq =
(αρEA)nnd,liq
(αρA)nnd,liq

− 1

2

(αρuA)2
nnd,liq

(αρA)2
nnd,liq

(441)

ennd,vap =
(αρEA)nnd,vap
(αρA)nnd,vap

− 1

2

(αρuA)2
nnd,vap

(αρA)2
nnd,vap

(442)

which are then used with the equation of state to obtain the element nodal phasic pressures

pnnd,liq = pliq(vnnd,liq, ennd,liq) (443)
pnnd,vap = pvap(vnnd,vap, ennd,vap) (444)

with, again, the specific volumes being the reciprical of their respective mass densities,
vnnd,k = 1

ρnnd,k
, k = {liq, vap}. Finally, for a weakly specified element boundary, the

boundary fluxes are set for node nnd as

(Fρ)nnd,liq = (αρA)nnd,liq ubc = 0 (445)
(Fρ)nnd,vap = (αρA)nnd,vap ubc = 0 (446)
(Fρu)nnd,liq = (αρA)nnd,liq u

2
bc + (αA)nnd,liq pnnd,liq = (αA)nnd,liq pnnd,liq (447)

(Fρu)nnd,vap = (αρA)nnd,vap u
2
bc + (αA)nnd,vap pnnd,vap = (αA)nnd,vap pnnd,vap (448)

(FρE)nnd,liq = (αρA)nnd,liq ubc [ennd,liq +
pnnd,liq
ρnnd,liq

+
1

2
u2
bc] = 0 (449)

(FρE)nnd,vap = (αρA)nnd,vap ubc [ennd,vap +
pnnd,vap
ρnnd,vap

+
1

2
u2
bc] = 0 . (450)

Remark: There are only six fluxes specified here for the 7-equation model because the
volume fraction evolution equation has no Eulerian flux (and thus cannot be integrated by
parts for the finite element solution). The advection term in the volume fraction evolution
equation results from the so called Lagrangian flux [13], and is not treated as a flux in
the RELAP-7 finite element method. Because the volume fraction evolution equation is
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already in characteristic form, with eigenvalue uint, it is satisfied from the element interior
solution, and nothing more needs to be done for the volume fraction at a closed end or wall
boundary.

6.3 Stagnation Inlet

The stagnation inlet, or tank boundary condition is designed to approximate the effect
of attaching a very large tank or volume of fluid (at rest) to the inlet so that flow can be
driven into the duct. It could physically be a tank, or it could be a large volume such
as the atmosphere. Regardless, it is ideally assumed that its volume is sufficiently large
that flow velocities within the volume are negligible and, consequently, that the stagnation
values of its thermodynamic properties are temporally invariant. A complicating feature
of such a boundary condition is that, while this boundary condition may drive flow into
the duct at steady state, during a transient, waves of sufficient magnitude may reflect from
this boundary so as to cause a temporary flow reversal, i.e. the normal inlet becomes a
temporary outlet until such time as the flow reverses again, becoming an inlet once more.

From the method of characteristics it is known that for a subsonic inlet there are
two characteristics entering the domain; these characteristics will carry the user-supplied
boundary values for the stagnation pressure p0,b and stagnation temperature T0,b, where the
subscript 0 denotes a stagnation quantity and the subscript b denotes boundary data. Note
that in addition, the user also supplies the inlet void fraction, which is applied as a Dirich-
let BC to the volume fraction; this is not discussed further in this section. The information
taken to come from the interior solution is the velocity u.

To summarize the stagnation pressure and temperature inlet boundary condition, the
following modifications are made to the nonlinear residuals, where the superscripts denote
the associated equation, and the subscript i denotes the inlet node index:

• The mass and energy equations use strongly-imposed Dirichlet BC:

Rmass
i := (αρA)i − (αA)iρb , (451)

Renergy
i := (αρEA)i − (αA)iρbEb . (452)

• The momentum equation uses a weakly-imposed BC by evaluating the boundary
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fluxes with the appropriate boundary data:

Rmomentum
i := Rmomentum

i +

∫
∂Ωinlet

αA(ρbu
2 + pb)ϕinxdΩ . (453)

Here, the subscript b not only denotes user-supplied boundary data, as in p0,b and T0,b,
but also denotes quantities that depend on boundary data, i.e., the quantities are not com-
puted directly from the interior solution. The following sequence summarizes how one
computes the values ρb, Eb, and pb referenced above:

1. First, enthalpy, specific internal energy, and density are directly computed from the
boundary data and equation of state:

h0,b ≡ h(p0,b, T0,b) , (454)

e0,b ≡ e(p0,b, T0,b) , (455)

ρ0,b ≡ ρ(p0,b, T0,b) . (456)

2. Specific volume is computed using ρ0,b:

v0,b ≡
1

ρ0,b

. (457)

3. Stagnation entropy is computed using the stagnation specific internal energy and
specific volume:

s0,b ≡ s(e0,b, v0,b) . (458)

4. By definition of the stagnation state, the process is isentropic, so the entropy before
and after stagnation is equal:

sb ≡ s0,b . (459)

5. By definition of the stagnation state, kinetic energy should be the difference between
static and stagnation enthalpy:

hb ≡ h0,b −
1

2
u2 . (460)

6. Static pressure is computed using the static enthalpy and entropy:

pb ≡ p(hb, sb) . (461)
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7. Static density and specific internal energy are computed using the static pressure and
entropy:

ρb ≡ ρ(pb, sb) , (462)

eb ≡ e(pb, sb) . (463)

8. Finally, the static specific total energy is computed using the static specific internal
energy and the interior-solution velocity:

Eb ≡ eb +
1

2
u2 . (464)

Note that currently, no check is performed to ensure that the flow does not reverse,
and also, no check is performed to ensure that the flow is subsonic. These checks may be
added in the future.

6.4 Static Pressure Outlet, Single-Phase

The static pressure outlet boundary condition is designed to approximate the effect of
attaching a very large tank or volume of fluid, such as the atmosphere to the outlet of a duct
so that the flow may be absorbed or captured by this large volume. The tank or volume is so
large that its thermodynamic conditions do not change with this fluid addition. Especially
it is assumed that the static pressure of the tank or volume static pressure is temporally
invariant, and is therefore neccessarily specified, pb or pback. This specified static pressure
is sometimes called the back pressure. A complicating feature of this boundary condition
is that, while the duct may be outflowing at this boundary at steady state, during a transient,
waves of sufficient magnitude may reflect from this boundary so as to cause a temporary
flow reversal. Then the normal outlet becomes a temporary inlet until such time as the
flow reverses again, becoming an outlet once more. This is very much like the opposite of
that discussed for the stagnation inlet boundary above, and will be further elaborated upon
subsequently.

To begin this description, assume first that the static pressure outlet boundary (and
volume) is located at the terminus of a duct, at its last node nnd. For discussion sake, it
is imagined to be also at the right end of the duct, so that the normal flow direction in the
duct is from left to right. As with the closed end boundary condition, subscript nnd on a
variable indicates the value at the last elemental (terminus) node of the duct for the current
solution iterate. A superscript * denotes a generic value of the variable at this boundary
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node. A subscript b denotes a supplied boundary condition value at the node that will be
used in the computation of fluxes.

From the method of characteristics it is known that at a subsonic outlet there are two
right running characteristics, a right running acoustic characteristic and a right running
material motion, particle path, or entropic characteristic. The material motion, particle
path, or entropic characteristic coming from the solution domain interior requires either

ρ∗ = ρnnd

or
p∗ = pnnd

while the acoustic characteristic coming from the solution domain interior requires either

u∗ = unnd

or
p∗ = pnnd .

Furthermore, this is the only information that can be used from the solution’s interior do-
main. On physical basis, for a subsonic outflow the pressure at the outlet will be enforced
to be the specified back pressure value pb. This forces the following choice:

ρ∗ = ρnnd (fromnodal solution iterate) (465)
u∗ = unnd (fromnodal solution iterate) (466)
p∗ = pb (specified boundary condition) , (467)

where ρnnd and unnd are obtained from the current solution iterate

ρnnd =
(ρA)nnd
Annd

(468)

unnd =
(ρuA)nnd
(ρA)nnd

. (469)

Then the internal energy is determined from the equation of state
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e∗ = e(v∗, p∗)

= e(
1

ρ∗
, pb) , (470)

and the sound speed is determined by either

w∗ = w(v∗, p∗)

= w(
1

ρ∗
, pb) , (471)

or (equivalently)

w∗ = w(v∗, e∗)

= w(
1

ρ∗
, e∗) . (472)

At this point, the velocity is verified to be subsonic, i.e. if 0 < unnd ≤ w∗ then the fluxes
are set for node nnd as

(Fρ)nnd = (ρuA)nnd (473)

(Fρu)nnd =
(ρuA)2

nnd

(ρA)nnd
+ pbAnnd (474)

(FρE)nnd = (ρuA)nnd

[
e∗ +

pb
ρnnd

+
1

2

(ρuA)2
nnd

(ρA)2
nnd

]
. (475)

Thus the nodal fluxes depend implicitly upon the current element nodal solution iterate
(which provides characteristic information from the domain interior) and the supplied
boundary condition information (which replaces the “missing” characteristic information).
The exit Mach number can also be computed form Mexit = unnd

w∗
.

If, however, the outflow is supersonic, i.e. if unnd > w∗ then the characteristic infor-
mation that is used must be modified. In addition to the two right running characteristics
considered above for subsonic outflow, there is another right running characteristics com-
ing from the solution domain interior. Because the outflow is supersonic, pressure dis-
trubances cannot propagate upstream from the large volume or tank into the duct, and the
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pressure at the exit no longer is required to match the specified pressure pb. This requires
that

ρ∗ = ρnnd

or
p∗ = pnnd

from the material motion, particle path, or entropy characteristic; while the two acoustic
characteristics coming from the solution domain interior require both

u∗ = unnd

and
p∗ = pnnd .

Thus ρ∗ = ρnnd, u∗ = unnd, and p∗ = pnnd. For supersonic outflow, all of the fluxes are
computed from the interior finite element nodal solution information. That is, from the
current solution iterate

ρnnd =
(ρA)nnd
Annd

(476)

unnd =
(ρuA)nnd
(ρA)nnd

(477)

e∗∗ = ennd =
(ρEA)nnd
(ρA)nnd

− 1

2

(ρuA)2
nnd

(ρA)2
nnd

(478)

and from the equation of state

p∗ = pnnd = p(
1

ρ∗
, e∗∗) (479)

w∗∗ = w(
1

ρ∗
, e∗∗) , (480)

the second of which can be used to determine the exit Mach number Mexit = unnd
w∗∗

. The
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supersonic outflow fluxes at node nnd are then set as

(Fρ)nnd = (ρuA)nnd (481)

(Fρu)nnd =
(ρuA)2

nnd

(ρA)nnd
+ p(

1

ρ∗
, e∗∗)Annd (482)

(FρE)nnd = (ρuA)nnd

[
e∗∗ +

p( 1
ρ∗
, e∗∗)

ρ∗
+

1

2

(ρuA)2
nnd

(ρA)2
nnd

]
. (483)

Remark: For sonic or supersonic outflows, if pnnd > pb at solution convergence, the exit
flow is said to be underexpanded. If, on the other hand, pnnd < pb at solution conver-
gence, the exit flow is said to be overexpanded. If, at solution convergence, the supersonic
flow has pnnd = pb the flow is said to be perfectly expanded. Nuclear vessel, and other
high-pressure tank blowdowns are commonly underexpanded.

Last, but not least, the flow at the “exit” node must be checked to see if it has reversed,
i.e. the “outlet” has temporarily become an inlet. If unnd · nnnd < 0 and |unnd| < w∗ the
flow has become a subsonic inlet (here nnnd is the solution domain outward normal at node
nnd). If unnd ·nnnd < 0 and |unnd| > w∗∗ the flow has become a supersonic inlet. If either
of these conditions occurs during an iterate, the boundary condition should be changed
to stagnation inlet boundary condition with the specified back pressure pb becoming the
specified stagnation inlet pressure p0, i.e. p0 = pb. Obviously, a value for stagnation
temperature, T0, must also be specified, to be used only in this event. The stagnation inlet
boundary conditions were fully described in the previous two sections.

6.5 Static Pressure Outlet, Two-Phase

Again the eigenstructure for the 7-equation two-phase model, without source terms, is like
that of two, separate instances of the single-phase model. The source terms which would
occur with the characteristic equations are accounted for in the solution of the element
equations. To physically and mathematically describe the static pressure outlet for the
7-equation two-phase model, the procedure described in the previous section for a single
phase is duplicated for each of the two phases, except that the effective flow areas are
modulated by the local, phasic volume fractions. That accounts for six of the seven char-
acteristic equations. The effect of the additional characteristic which occurs due to the
volume fraction evolution equation for the 7-equation must also be taken into account.
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As was done with the extension of the closed end and stagnation boundary conditions
from single-phase to the 7-equation two-phase equation set an additional subscript indi-
cating the phase or interface is utilized. As with the single-phase version, the two-phase
static pressure outlet boundary for RELAP-7 would generally require the specification of
a static outlet pressure, or back pressure, for each phase, pb,k for k = {liq, vap}. However,
it is difficult to imagine a case where discharge of two-phase flow from a duct would occur
due to each phase responding to a separate receiver, i.e. pb,liq 6= pb,vap. So for subsonic
outflow of each phase, a common static outlet or back pressure pb is employed for both
phases.

From the method of characteristics, for subsonic outflow of each phase

ρ∗liq = ρnnd,liq (fromnodal solution iterate) (484)

u∗liq = unnd,liq (fromnodal solution iterate) (485)

p∗liq = pb (specified boundary condition) , (486)

and

ρ∗vap = ρnnd,vap (fromnodal solution iterate) (487)

u∗vap = unnd,vap (fromnodal solution iterate) (488)

p∗vap = pb (specified boundary condition) , (489)

where ρnnd,k and unnd,k for k = {liq, vap} are obtained from the current solution iterate

ρnnd,k =
(αρA)nnd,k
(αA)nnd,k

(490)

unnd,k =
(αρuA)nnd,k
(αρA)nnd,k

. (491)

Then the phasic internal energies are determined from the equation of state

e∗k = ek(v
∗
k, p
∗
k)

= ek(
1

ρ∗k
, pb) , (492)
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and the phasic sound speeds are determined by either

w∗k = wk(v
∗
k, p
∗)

= wk(
1

ρ∗k
, pb) , (493)

or (equivalently)

w∗k = wk(v
∗
k, e
∗
k)

= wk(
1

ρ∗k
, e∗k) . (494)

From the seventh characteristic due to the volume fraction evolution equation, phase k
volume fractions must come from the phase’s solution domain interior if uint · nnnd > 0,
i.e. they must also come from the finite element current solution iterate

αnnd,k =
(αA)nnd,k
Annd

. (495)

At this point, the phasic velocities are each verified to be subsonic, i.e. if 0 < |unnd,k| ≤
w∗k for each phase k = {liq, vap} then the fluxes are set for each subsonic phase, for node
nnd as

(Fρ)nnd,k = (αρuA)nnd,k (496)

(Fρu)nnd,k =
(αρuA)2

nnd,k

(αρA)nnd,k
+ pb(αA)nnd,k (497)

(FρE)nnd,k = (αρuA)nnd,k

[
e∗k +

pb
ρnnd,k

+
1

2

(αρuA)2
nnd,k

(αρA)2
nnd,k

]
. (498)

The exit Mach number for each phase is then Mexit,k =
unnd,k
w∗k

, for k = {liq, vap}.

If, however, the outflow for either phase is supersonic, i.e. unnd,k > w∗k, for k =
{liq, vap}, then the characteristic information that is used for that phase must be modified.
In addition to the two right running characteristics considered above for subsonic out-
flow, there is another right running characteristic for that phase coming from the solution
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domain interior. Because the phasic outflow is supersonic, pressure distrubances cannot
propagate upstream in that phase from the large volume or tank into the duct, and the pres-
sure for that phase at the exit no longer is required to match the specified pressure pb. This
requires that, for each supersonic phase k, ρ∗k = ρnnd,k, u∗k = unnd,k, and p∗k = pnnd,k. For
each phase with supersonic outflow, all of the fluxes are computed from the interior finite
element nodal solution information. That is, for each supersonic phase at node nnd, from
the current solution iterate

ρnnd,k =
(αρA)nnd,k
(αA)nnd,k

(499)

unnd,k =
(αρuA)nnd,k
(αρA)nnd,k

(500)

e∗∗k = ennd,k =
(αρEA)nnd,k
(αρA)nnd,k

− 1

2

(αρuA)2
nnd,k

(αρA)2
nnd,k

(501)

and from the equation of state

p∗k = pnnd,k = pk(
1

ρ∗k
, e∗∗k ) (502)

w∗∗k = wk(
1

ρ∗k
, e∗∗k ) , (503)

the second of which can be used to determine the phase’s exit Mach number Mexit,k =
unnd,k
w∗∗k

. The supersonic phase’s outflow fluxes at node nnd are then set as

(Fρ)nnd,k = (αρuA)nnd,k (504)

(Fρu)nnd,k =
(αρuA)2

nnd,k

(αρA)nnd,k
+ pk(

1

ρ∗k
, e∗∗k )(αA)nnd,k (505)

(FρE)nnd,k = (αρuA)nnd,k

[
e∗∗k +

pk(
1
ρ∗k
, e∗∗k )

ρ∗k
+

1

2

(αρuA)2
nnd,k

(αρA)2
nnd,k

]
. (506)

Remark: In the discharge of a two-phase mixture from a duct into a receiver (large tank
or atmosphere, etc.), each phase can be subsonic, underexpanded, or overexpanded. That,
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coupled with the complicated dynamics of the 7-equation two-phase model, with its mul-
tiple inherent relaxation processes, in the element adjacent to the boundary, can lead to
very complicated discharge flows with complicated choking behavior.

Lastly, as was done for single-phase, the flow for each of the two phases at the “exit”
node must be checked to see if it has reversed, i.e. the “outlet” has temporarily become an
inlet for that phase. If unnd,k ·nnnd < 0 and |unnd,k| < w∗k the flow has become a subsonic
inlet for phase k. If unnd,k ·nnnd < 0 and |unnd,k| > w∗∗k the flow has become a supersonic
inlet for phase k. If either of these conditions occurs for phase k during an iterate, the
boundary condition for that phase should be changed to a phasic stagnation inlet boundary
condition with the specified back pressure pb becoming the specified phasic stagnation in-
let pressure p0,k, i.e. p0,k = pb. Obviously, a value for the phasic stagnation temperature,
T0,k, and a value for the liquid phase volume fraction, αbc,liq, (αbc,vap = 1 − αbc,liq) must
also be specified, to be used only in this event. The stagnation inlet boundary conditions
were fully described previously.

6.6 Specified Charging Rate, Single-Phase

The specified charging rate boundary condition, sometimes also refered to as an injection
boundary, joins the stagnation inlet boundary condition, discussed previously, as another
way to approximate an inlet flow boundary. With the specified charging rate boundary
condition the inlet mass flow rate is specified along with the stagnation enthalpy of the
inlet flow. This is a fairly strong physical condition in that it enforces the specified inlet
mass flow rate no matter what is happening inside the duct to which it is attached. It is
emphasized that, unlike the stagnation inlet boundary, no flow reversal can occur with the
specified charging rate boundary condition. In the following description it will be assumed
that these specified parameters are such as to produce a subsonic inlet flow condition.

It is assumed first that the specified charging rate boundary is located at the terminus
of a duct at its first node, node 1, which for discrussion sake will be imagined to be also
at the left end of the duct, so that the flow will be driven into the duct from left to right.
Subscripts on a variable will again indicate the variable at that finite element node number,
except that the subscript 0 will also unambiguously be use to indicate a stagnation value.
Superscript ∗ denotes a generic value of the variable at the boundary node.

From the method of characteristics it is known that for a subsonic inlet there is only
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one left running acoustic characteristic coming from the solution domain interior which
requires either

u∗ = u1

or
p∗ = p1 , (507)

and this is the only information that can be used from the solution’s interior domain. For
simplicity, the former, u∗ = u1, is picked. The other information which would be carried
by a right running acoustic characteristic, u∗ or p∗, and right running material motion,
particle path, or entropy characteristic, ρ∗ or p∗, is missing and must be supplied by the
boundary conditions. The choice of u∗ to come from the interior solution forces the fol-
lowing choice:

u∗ = u1 (fromnodal solution iterate)

p∗ (fromspecified boundary condition/solution)

ρ∗ (fromspecified boundary condition/solution) .

The missing information will be supplied from two physical approximations based on:
(1) From the energy equation, the stagnation enthalpy, h0, is invariant at the inlet and is
specified, and (2) From the specified mass flow rate, ṁ, at the duct inlet. This information
is embodied in the following two equations which must be satisfied simultaneously:

ρ∗u1A1 = ṁ

and the transcendental equation

h(ρ∗, p∗) +
1

2
u2

1 = h0 ,

where the nodal velocity, u1 is determined from

u1 =
(ρuA)1

(ρA)1

. (508)

These two equations can be simplified. From the first, an explicit expression of ρ∗ is
obtained

ρ∗ =
ṁ

A1

(ρA)1

(ρuA)1

, (509)
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and from the second, a transcendental equation in p∗ only (with ρ∗ as a dependency) is
obtained

e(ρ∗, p∗) +
p∗

ρ∗
+

1

2

(ρuA)2
1

(ρA)2
1

= h0 , (510)

which, of course, must be solved iteratively for p∗. One way that this can be accomplished
for an iterative finite element solver (to avoid an iteration within an iteration) is to rearrange
this equation into the functional iteration form

p∗, ν+1 = ρ∗h0 − ρ∗e(ρ∗, p∗, ν)−
1

2
ρ∗

(ρuA)2
1

(ρA)2
1

(511)

where superscripts ν+ 1 and ν denote iterate levels. Thus the p∗ dependency in e(ρ∗, p∗, ν)
lags by one iteration level. However, at convergence, all the variables will be consistent to
with convergence tolerance.

With ρ∗, u∗, and p∗, ν+1 determined for the current solution iterate, the fluxes can be
computed as

(Fρ)1 = ṁ (512)

(Fρu)1 =
ṁ2

ρ∗A1

+ p∗, ν+1A1 (513)

(FρE)1 = ṁh0 . (514)

As with the previously described boundaries, the nodal fluxes again depend implicitly upon
the current element nodal solution iterate (which provides characteristic information from
the domain interior) and the supplied boundary condition information (which replaces the
“missing” characteristic information).

Remark: It is tempting to replace the weakly imposed boundary condition for momen-
tum, where flux (Fρu)1 is specified above, by the strongly imposed Dirichlet boundary
condition Residual = (ρuA)1 − ṁ ≈ 0. This approximation, however, violates the char-
acteristic conditions for a subsonic inlet because, in that case, all of the boundary condition
information would be coming from the specified information, and none of the information
would be coming from the solution in the domain interior.
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6.7 Specified Charging Rate, Two-Phase

The specified charging rate boundary condition is designed to approximate an inlet in
which the mass flow rate is specified for each phase, ṁk, and the flow for each phase
enters the duct with a specified stagnation enthalpy, h0,k, k = {liq, vap}. As with the
single-phase version of this boundary condition, it is assumed that the conditions specified
are such that the inlet flow velocity for each phase is subsonic. No flow reversal can occur
for either phase. Subscripts and superscripts are identical to those for single-phase, except
that an additional subscript is added to variables to indicate that the variable applies to a
particular phase k, with k = {liq, vap}.

As with the other two-phase boundary conditions, because of the eigenstructure, the
two-phase models for each phase mimick those of the corresponding single phase. To
account for the volume fraction evolution equation, a seventh characteristic condition re-
quires that a volume fraction of liquid be specified at the boundary, αbc,liq, if uint is directed
into the duct and that the liquid volume fraction at the boundary comes from the interior
of the duct if uint is directed out of the duct.

From the method of characteristics it is known that for a subsonic inlet there is only
one left running acoustic characteristic for each phase coming from the solution domain
interior which requires either

u∗k = u1,k

or
p∗k = p1,k , (515)

for each k = {liq, vap}, and this is the only information that can be used from the solu-
tion’s interior domain. For simplicity, the former, u∗k = u1,k, is picked for each phase k.
The other information which would be carried by right running acoustic characteristics,
u∗k or p∗k for each k = {liq, vap}, and right running material motion, particle path, or
entropy characteristics, ρ∗k or p∗k for each k = {liq, vap}, is missing and must be supplied
by the boundary conditions. The choice of u∗k for each phase to come from the interior
solution forces the following choices for each k = {liq, vap}:

u∗k = u1,k (fromnodal solution iterate)

p∗k (fromspecified boundary condition/solution)

ρ∗k (fromspecified boundary condition/solution) .
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In addition, the linear degenerate characteristic resulting from the volume fraction evolu-
tion equation forces the following choice

α∗liq = αbc,liq if uint · n1 ≤ 0 (uint into duct) (516)

α∗liq = α 1,liq if uint · n1 > 0 (uint out from duct) , (517)

and, obviously, α∗vap = 1− α∗liq.

As with the single-phase case, the missing information will be supplied from the two
physical approximations for each phase (which must be satisfied simultaneously for each
phase)

α∗kρ
∗
ku1,kA1 = ṁk

and the transcendental equations

hk(ρ
∗
k, p
∗
k) +

1

2
u2

1,k = h0,k ,

where the nodal velocities, u1,k are determined from

u1,k =
(αρuA)1,k

(αρA)1,k

, (518)

for each k = {liq, vap}. The interface velocity uint is determined from the phasic veloci-
ties and thermodynamic properties

uint =
Zliqu1,liq · n1 + Zvapu1,vap · n1

Zliq + Zvap
− sgn(α1,liq − αbc,liq)

p∗liq − p∗vap
Zliq + Zvap

(519)

where Zk = ρ∗kw
∗
k for k = {liq, vap} is the phasic acoustic impedance. If uint ≤ 0 the

interface velocity is flowing into the duct and the specified boundary value of αbc,liq is
used, i.e. α∗liq = αbc,liq, which is handled as a Dirichlet boundary. If, on the other hand,
when uint > 0 the interface velocity is interface flow out from the duct and the specified
boundary value of αbc,liq must not be used. In this condition, no boundary condition is
necessary and α∗liq = α1,liq from the current finite element solution iterate for node 1.

These equations can be simplified. From the first set, explicit expressions of ρ∗k are
obtained

ρ∗k =
ṁk

α∗kA1

(αρA)1,k

(αρuA)1,k

, (520)
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and from the second set, transcendental equations in p∗k only for each phase k (with ρ∗k as
a dependency, respectively in each phase) are obtained

ek(ρ
∗
k, p
∗
k) +

p∗k
ρ∗k

+
1

2

(αρuA)2
1,k

(αρA)2
1,k

= h0,k . (521)

As with the single-phase version, for an iterative finite element solver, a way to handle the
additional iterative requirements of the transcendental equations is to rearrange them into
functional iteration form

p∗, ν+1
k = ρ∗kh0,k − ρ∗kek(ρ∗k, p

∗, ν
k )− 1

2
ρ∗k

(ρuA)2
1,k

(ρA)2
1,k

(522)

for each k = {liq, vap}, where superscripts ν + 1 and ν denote iterate levels.

With ρ∗k, u∗k, and p∗, ν+1
k for k = {liq, vap} determined, the fluxes for each phase can

be computed as

(Fρ)1,k = ṁk (523)

(Fρu)1,k =
ṁ2
k

α∗kρ
∗
kA1

+ α∗kp
∗, ν+1
k A1 (524)

(FρE)1,k = ṁkh0,k . (525)

7 Flow Topology - Dependent Closure Models

The purpose of this chapter is to describe the correlations that close the equation system
for both the single- and two-phase flows. Because information was lost in the averaging
process used to homogenize the 1-D balance equations, some of this information must
be approximately reconstructed to restore closure of the governing equation systems. For
single-phase flow, closure correlations are required to describe the interaction between the
fluid and the wall, e.g., wall drag and wall heat transfer models. In addition to those types
of closures necessary for single-phase flows, two-phase flows require closures related to
the fact that interfaces, having dynamically changing topologies, are present between the
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two phases. For two-phase flow, wall drag and wall heat transfer models, which now must
also include the phasic partitioning, are required to describe the interaction between the
two phases and the wall. Additional closure correlations to describe the interfacial interac-
tions between the two phases are also necessary to close the system, such as interfacial area
concentration and distribution, interfacial drag (friction) and interfacial heat/mass transfer
models. For two-phase flow, most of the closure correlations depend critically on the local
topology of the two-phase flow, for example bubbly flow in vertical pipes.

When a vapor-liquid mixture flows in ducts, pipes, or channels, the two phases may
distribute in a variety of patterns or topologies, often referred to as flow regimes. In general,
these patterns depend on the phasic flow rates, fluid properties, and channel geometries. In
two-phase flows, interfacial heat/mass and momentum exchanges vary greatly with these
topologies, so it is important to correctly identify the local flow regime in the simulations
of two-phase flow. For example, Fig. 5 shows the flow regimes in determining the interfa-
cial drag models used in the TRACE code [2]. In this particular case, the interfacial drag
models are considered for the dispersed bubble flow regime, the combined slug and Taylor
cap flow regime, and the annular/mist flow regime.

Many of these flow topology-dependent closure correlations have been extensively
investigated and partially validated in existing system analysis codes, for example TRACE
[2]. For the current stage of RELAP-7 code development, the existing closure correlations
for vertical pre-CHF flows (i.e. for vertical flows before the critical heat flux state is
reached) from the TRACE code [2] are used exclusively. Thus for all references in this
chapter, the reader is referred to the TRACE code manual [2]. More details of the flow
topology-dependent closure models are discussed in the following subsections.

7.1 Wall Drag

In this section, the wall friction model will be discussed for both single-phase and two-
phase flow. The single-phase flow will be discussed first. TRACE closures for wall friction
are implemented in terms of wall “drag coefficients”; for single-phase flow, the wall drag
coefficient is defined as

Cwall,k =
2fwall,kρk

dh
, (526)

where the subscript k = {liq, vap} indicates the fluid phase, fwall,k is the Fanning friction
factor5 for single-phase flow of phase k, and dh is the hydraulic diameter. For 2-phase

5Note that the Fanning friction factor is equal to 1/4 times the Darcy-Weisbach friction factor.
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Figure 5. Flow regimes in vertical pipes under the pre-CHF con-
ditions. From left to right, dispersed bubble, slug flow, taylor cap
bubble, and annular/mist [2].

flow, one must multiply by the fraction χk of the surface area that phase k occupies, as
discussed in Section 3.2.4, and additionally one can apply a 2-phase multiplier φfriction

k :

Cwall,k = φfriction
k

2fwall,kρk
dh

χk . (527)

Note that usually, the terminology “drag coefficient” represents a dimensionless quan-
tity CD relating drag force FD and dynamic pressure 1

2
ρu2:

FD = CD

(
1

2
ρu2

)
AS , (528)

where AS is the area of the surface giving friction. However, in the TRACE context, “drag
coefficient” will represent the quantity Cwall,k defined above. The two-phase flow wall
friction model will be further discussed for both the pre-CHF and post-CHF flow, and also
for a special horizontal stratified flow condition.
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7.1.1 Single-Phase Flow

The single-phase wall friction is calculated as

F friction
wall = Cwall|u|uA , (529)

where u is the velocity, and Cwall is the wall drag coefficient. As suggested in TRACE [2],
the Churchill formula is used to calculate the wall friction factor for single-phase flow:

fwall = 2

[(
8

Re

)12

+
1

(a+ b)3/2

]1/12

, (530)

where

a =

2.475 ln

 1(
7

Re

)0.9
+ 0.27

(
ε
Dh

)


16

, (531)

and

b =

(
3.753× 104

Re

)16

, (532)

with ε being the surface roughness.

The Reynolds number is computed as

Re = max

(
ρ|u|Dh

µ
, 10

)
, (533)

where µ is the dynamic viscosity, and a lower limit of 10 is imposed.

7.1.2 Two-Phase Flow: Pre-CHF Flow Regimes

For two-phase flow regimes, the two-phase multiplier concept is used to determine the
two-phase flow wall drag. By comparing the 7-equation model presented in Section 3.1
and the traditional 6-equation two-fluid model used in TRACE, it can be observed that

F friction
wall,` = ACwall,`uliq|uliq| (534)

and
F friction

wall,v = ACwall,vuvap|uvap| , (535)
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where Cwall,` and Cwall,v are the phasic wall drag coefficients used in TRACE, A is the
pipe cross-sectional area, and uliq and uvap are the phasic velocities. For pre-CHF two-
phase flow regimes, wall drag coefficients are modeled in bubbly/slug and annular/mist
flow regimes. For all pre-CHF two-phase flow regimes, it is assumed that all of the wall
drag is applied to the liquid phase alone.

7.1.2.1 Bubbly/Slug Flow Regime When wall nucleate boiling effect is not consid-
ered, the liquid phase wall drag coefficient is modeled as

Cwall,` = fwall,`
2ρliq
Dh

, (536)

with fwall,` calculated from the Churchill formula using the liquid phase Reynolds number:

Re2Φ,liq =
(1− αvap)ρliq|uliq|Dh

µliq
. (537)

to consider the two-phase flow vapor volume fraction effect. When nucleate boiling effect
is considered, following TRACE [2], a correction factor is introduced, and the wall drag
coefficient is then modeled as

Cwall,` = fwall,`
2ρliq
Dh

(1 + CNB)2 , (538)

where the empirical coefficient CNB is given as

CNB = min

{
2, 155

dB
Dh

[αvap(1− αvap)]0.62

}
, (539)

where
dB
Dh

= 0.015

(
σ

τwDh

)0.5

, (540)

and
τw =

fwall,`

2
ρliqu

2
liq . (541)

The gas phase wall drag is assumed to be zero: Cwall,v = 0.
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7.1.2.2 Annular/Mist Flow Regime As in TRACE [2], in the annular/mist flow regime,
if the channel surface is considered to be fully covered by liquid film, the wall drag coef-
ficient for the liquid phase is modeled as

Cwall,` = ffilm
2ρliq
Dh

, (542)

where ffilm is the friction factor for the annular flow regime and is given by a power law
combination of the laminar and turbulent values:

ffilm = (f 3
lam + f 3

turb)
1/3 . (543)

Here the friction factor for the laminar regime is modeled as

flam =


16

Re2Φ,liq
αvap ≤ 0.95

[16+8(αvap−0.95

0.99−0.95 )]
Re2Φ,liq

0.95 < αvap < 0.99
24

Re2Φ,liq
αvap ≥ 0.99

. (544)

The linear interpolation between vapor volume fraction 0.95 and 0.99 reflects the transition
between pipe geometry correlation and parallel plate geometry, which is more appropriate
for thinner film with void fraction larger than 0.99. The friction factor for the turbulent
regime is modeled as

fturb =
1{

3.6 log10

[
6.9

Re2Φ,liq
+
(
ε/D
3.7

)1.11
]}2 . (545)

In these correlations, Re2Φ,liq is calculated using equation (537). In addition, according to
the TRACE closure module [111], the value of Re2Φ,liq is limited to be larger than 1 in
Equation (544), and to be larger than 100 in Equation (545). The vapor phase wall drag is
assumed to be zero, i.e., Cwall,v = 0, if the channel surface is fully covered by liquid film.

When the channel surface is considered to be partially covered by liquid film, taken as
the condition wherein liquid film is present with thickness smaller than 25 µm, the wall
drag coefficient for the liquid phase is modeled as

Cwall,` = fwetffilm
2ρliq
Dh

, (546)

where

fwet =
(1− αvap)Dh

4(25× 10−6)
. (547)
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In this case, the vapor phase wall drag coefficient is no longer zero and is modeled as

Cwall,v = (1− fwet)f2Φ,vap
2ρvap
Dh

, (548)

with f2Φ,vap denoting the vapor phase friction factor, which is computed with the Churchill
formula with the vapor phase Reynolds number,

Re2Φ,vap =
αvapρvap|uvap|Dh

µvap
. (549)

7.1.2.3 Transition between Bubbly/Slug and Annular/Mist Flow Regimes Follow-
ing TRACE [2], a smooth transition from the bubbly/slug flow regime to the annular/mist
flow regime is used. The transition is assumed to occur between vapor volume fractions
of 0.8 and 0.9; here, the liquid phase wall drag coefficient is modeled as

Cwall,` = wfBS(Cwall,`)BS + (1− wfBS)(Cwall,`)AM , (550)

where subscripts BS and AM represent bubbly/slug flow and annular mist flow conditions,
respectively. The weight factor is defined as

wfBS =
0.9− αvap
0.9− 0.8

. (551)

7.1.2.4 Horizontal Stratified Flow For horizontal stratified flow, both phases are in
contact with the channel wall, so the wall drag coefficient is modeled separately for each
phase. For phase k = {liq, vap}, the wall friction factor is calculated from the Churchill
formula with the phasic Reynolds number, Rek, which is defined as

Rek =
ρkukDh,k

µk
, (552)

with Dh,k being the phasic hydraulic diameter. Following the definition used in TRACE
[2], the two phasic hydraulic diameters are defined as

Dh,liq =
4Aliq
Sliq

=
4Aαliq
Sliq

(553)

and
Dh,vap =

4Avap
Svap + Sint

=
4Aαvap

Svap + Sint
. (554)
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As shown in Figure 6, Sliq, Svap, and Sint can be obtained as

Sliq = Dθ , (555)

Svap = D(π − θ) , (556)

and
Sint = D sin θ , (557)

where θ is in radians and is computed as

θ = cos−1

(
D/2− h
D/2

)
= cos−1

(
1− 2h

D

)
. (558)

The depth of the liquid phase, h, can be obtained as a curve-fitting function for round pipe
as

h

D
=


1− 7.0612668αvap αvap ≤ 0.001

1.0− a1α
2/3
vap − a2αvap − a3α

2
vap 0.001 < αvap ≤ 0.5

b1α
2/3
liq + b2αliq + b3α

2
liq 0.5 < αvap ≤ 0.999

7.0612668αliq αvap > 0.999

, (559)

where a1 = 0.70269591, a2 = 0.034146667, a3 = 0.161023911, b1 = 0.70269591,
b2 = 0.034146667, and b3 = 0.161023911.

Then, considering the wetted perimeter for each phase, the wall drag coefficients are
modeled as

Cwall,k = fwall,k
2ρk
Dh,wet

= fwall,k
ρk
2

Sk
A
, (560)

where
Dh,wet =

4A

Sk
. (561)

That is,

Cwall,` = fwall,`
ρliq
2

Sliq
A

= fwall,`
2ρliq
D

θ

π
, (562)

and

Cwall,v = fwall,v
ρvap

2

Svap
A

= fwall,v
2ρvap
D

(π − θ)
π

. (563)

It must be noted that all previous derivations are based on a round pipe assumption.

149



h 
θ 

D 

Svap 

Sliq 

Sint 

Figure 6. Schematic drawing of the horizontal stratified flow.

7.1.2.5 Transition between Horizontal Stratified and Non-Stratified Flow If the
flow regime is considered to be in transition between stratified and non-stratified condition,
a linear interpolation is used:

Cwall,k = wfstrat(Cwall,k)strat + (1− wfstrat)(Cwall,k)non-strat , (564)

where (Cwall,k)strat and (Cwall,k)non-strat are wall drag coefficients for stratified and non-
stratified conditions, respectively. Following the TRACE manual [2], the weighting factor,
wfstrat, is determined from several factors:

wfstrat = wfTDwfCWwfCCFL , (565)

where wfTD is the weighting factor for the Taitel-Dukler transition from stratified flow
condition, wfCF is the weighting factor for mass flux, and wfCCFL is the weighting factor
for counter-current flow limit.

The weighting factor for the Taitel-Dukler transition from stratified flow condition,
wfTD, is defined as

wfTD = max

[
0,min

(
1, 2− |ur|

ur,crit

)]
, (566)
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with ur = uvap − uliq, and

ur,crit =

(
1− hl

D

)[
g∆ρ cosφAvap
ρg(dAl/dhl)

]1/2

, (567)

where φ is the pipe inclination angle (for example, φ = 0 for horizontal pipe and π/2 for
vertical pipe), and (dAl/dhl) is the derivative of liquid flow area with respect to height,
which is obtained as

dAl
dhl

= max

D
[

1−
(

2hl
D
− 1

)2
]1/2

, 0.0001D

 . (568)

As in the TRACE manual [2], the weighting factor for mass flux, wfCW, is calculated
as

wfCW = max

[
0, min

(
1,

2700−G
2700− 2000

)]
, (569)

where G is the total mass flux of the two-phase mixture.

Again as in the TRACE manual [2], the weighting factor for counter-current flow limit,
wfCCFL, is calculated as

wfCCFL = max

[
0, min

(
1,

1.2−
(
j∗vap
)1/2 −

(
j∗liq
)1/2

1.2− 0.65

)]
, (570)

with the non-dimensional superficial phasic velocities defined as

j∗k = |jk|
(

ρk
g∆ρD

)1/2

. (571)

Here the superficial phasic velocity is defined by jk = αkuk.

7.1.3 Two-Phase Flow: Post-CHF Flow Regimes

For post-CHF conditions, wall drag is modeled for two flow regimes: inverted annular and
dispersed flow regimes. A linear interpolation is used in the transitional region between
these two regimes.
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7.1.3.1 Inverted Annular Flow The inverted annular flow regime is applied for vapor
volume fraction less than 0.6 under the post-CHF conditions. In this regime, it is assumed
that only the vapor phase is in contact with the wall, and the wall-to-liquid drag is zero,
which leads to Cwall,` = 0. For the wall drag to the vapor phase, a similar two-phase
multiplier concept is used. The wall drag coefficient for the vapor phase is modeled as

Cwall,v = Φ2
vap

[
2f2Φ,vapα

2
vapρvap

Dh

]
. (572)

By analogy with annular flow, the two-phase multiplier for the inverted annular flow is

Φ2
vap =

1

α2
vap

, (573)

so the wall coefficient is
Cwall,v = f2Φ,vap

2ρvap
Dh

. (574)

Here, the friction factor f2Φ,vap is the Fanning friction factor calculated from the Churchill
formula, Equation (530), with

Re2Φ,vap =
|Gvap|Dh

µvap
=
αvapρvap|uvap|Dh

µvap
. (575)

7.1.3.2 Dispersed Flow The dispersed flow regime is applied for vapor volume frac-
tion larger than 0.9 under the post-CHF conditions. The wall drag coefficient for the
dispersed flow regime is modeled as

Cwall,v = fpg
2ρvap
Dh

, (576)

where fpg is the effective friction fraction for dilute suspensions:

fpg = fwall,vap [1 + min(12,LF)]0.3 . (577)

In this equation, LF is the loading factor that is calculated as

LF =
(1− αvap)ρliquliq
αvapρvapuvap

. (578)

The vapor phase wall friction factor, fwall,vap, is calculated from the Churchill formula,
Equation (530), similar to the inverted annular flow condition.

152



7.1.3.3 Transition between Inverted Annular and Dispersed Flow Under post-CHF
flow conditions, when the vapor volume fraction is between 0.6 and 0.9, a linear interpo-
lation method is used. A dispersed flow weighting factor is first defined as

wfDF =
αvap − 0.6

0.9− 0.6
, (579)

and then the wall drag coefficient for this transitional region is interpolated as

Cwall,v = (1− wfDF) (Cwall,v)IA + wfDF(Cwall,v)DF , (580)

where subscripts IA and DF represent inverted annular flow and dispersed flow conditions,
respectively.

7.2 Interfacial Drag

By comparing the 7-equation model presented in Section 3.1 and the 6-equation two-fluid
model used in TRACE [2], it can be found that

Ffriction,vap = −Ffriction,liq = ACiur|ur| , (581)

where A is the pipe cross-sectional area, Ci is the interfacial drag coefficient, and ur is the
relative velocity between the two phases:

ur = uvap − uliq . (582)

All correlations discussed in this section closely follow those used in TRACE [2].

7.2.1 Pre-CHF Flow Regimes

For pre-CHF regimes in vertical pipes/bundles, interfacial drag is modeled in three ma-
jor regimes: bubbly, cap/slug, and annular/mist. The bubbly and slug flow regimes are
grouped together using a similar approach that is based on the drift-flux model concept.

7.2.1.1 Bubbly/Slug Flow For the combined bubbly/slug flow regime, the interfacial
drag coefficient, Ci, is modeled as

Ci,BS =
αvap(1− αvap)3g∆ρ

v̄2
gj

Ps , (583)
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where the subscript BS stands for the combined bubbly and slug flow regimes, PS is the
profile slip factor, v̄gj is the weighted area-average value of the drift velocity, and ∆ρ is
the density difference between the two phases: ∆ρ = ρliq − ρvap.

The profile slip factor is calculated as

Ps =

(
1−C0αvap

1−αvap uvap − C0uliq

)2

u2
r + ε

. (584)

Here ε is a small positive value (10−8) that is added to the denominator to avoid potential
divided-by-zero numerical issue. The distribution coefficient, C0, and the weighted area-
average value of the drift velocity, v̄gj , are both dependent on flow regime (dispersed
bubbly flow or slug flow) and flow channel geometry (pipe or rod bundle).

7.2.1.1.1 Pipe Geometry For pipe flow, the two drift-flux-model-related parame-
ters v̄gj and C0 are modeled separately in each of the dispersed bubbly flow and cap/slug
flow conditions.

For the dispersed bubbly flow regime in a pipe, they are modeled as

(v̄gj)DB =
√

2

(
σg∆ρ

ρ2
liq

)1/4

(585)

and
C0,DB = 1.2− 0.2

√
ρvap
ρliq

, (586)

where σ is the surface tension of the interface, and subscript DB represents the dispersed
bubbly flow regime.

For the cap/slug flow regime, the distribution coefficient, C0, is modeled the same as
in the dispersed bubbly flow regime: C0,CS = C0,DB. The subscript CS represents the
cap/slug flow regime. For the cap/slug flow regime, the weighted drift velocity is given by

(v̄gj)CS = v̄+
gj

(
σg∆ρ

ρ2
liq

)1/4

, (587)

where the non-dimensional drift velocity is modeled as

v̄+
gj = 0.0019 (min[30, D∗h])

0.809

(
ρvap
ρliq

)−0.157

N−0.562
µ,liq . (588)
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Here, the non-dimensional hydraulic diameter is given as

D∗h =
Dh√
σ
g∆ρ

, (589)

and the liquid viscosity number is defined as

Nµ,liq ≡
µliq(

ρliqσ
√

σ
g∆ρ

)1/2
. (590)

The quantity
√

σ
gδρ

is a capillary number, Ca, which will recur subsequently, so for con-

venience, this definition shall be made:

Ca =

√
σ

g∆ρ
.

A transition region is added between the dispersed bubbly and cap/slug flow regimes.
In this transition region, a simple linear interpolation is used to model the weighted drift
velocity:

v̄gj = wfDB (v̄gj)DB + (1− wfDB) (v̄gj)CS . (591)

The weighted drift velocity (v̄gj)DB and (v̄gj)CS are calculated from Equations (585) and
(587), respectively. The linear interpolation coefficient wfDB is calculated as

wfDB =
αvap,CS − αvap
αvap,CS − αvap,DB

, (592)

where

αvap,DB = 0.2 min

[
1,
Tsat − Tl

5

]
, (593)

and
αvap,CS = αvap,DB + 0.1 , (594)

with Tsat = Tint.
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7.2.1.1.2 Rod Bundle Geometry For rod bundle geometry, the Bestion model is
used to calculate v̄gj , which is

v̄gj = 0.188
√
g∆ρDh/ρvap . (595)

The distribution parameter, C0, for rod bundle geometry is simply set to be 1.

7.2.1.2 Annular/Mist Flow For the annular/mist flow regime, the interfacial drag comes
from two parts: the interfacial drag between the liquid film and the vapor core, and the in-
terfacial drag between the liquid droplets and the vapor core.

Considering the velocity difference between the liquid film and the liquid droplets
entrained in the vapor core, the overall interfacial drag coefficient for the annular/mist
flow regime is modeled as

Ci,AM = Ci,film + Ci,drop
u2
r,d

(uvap − uliq)2
, (596)

where Ci,film and Ci,drop are the interfacial drag coefficients for the liquid film and droplets,
respectively, and ur,d is the droplet relative velocity. In code implementation, the magni-
tude of uvap − uliq is defined to be larger than 10−6 m/s. The interfacial drag coefficient
for the liquid film part is modeled as

Ci,film = fi,filmAint,film
1

2
ρvap . (597)

Here, the specific interfacial area (interfacial area per unit volume) is computed from

Aint,film =
4

Dh

√
αvap , (598)

and the friction factor for the liquid film is approximated by

fi,film = 0.005[1 + 75(1− αvap)] . (599)

For the interfacial drag between the liquid droplets and the vapor core, the fraction of
the liquid flow that is entrained as droplets in the vapor core must be estimated first. For
small diameter pipes (Dh ≤ 3.2 cm), the entrainment fraction is modeled as

E∞ = tanh
[
7.25× 10−7 We1.25

vap min(6400,Ref )
0.25
]
, (600)
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where the liquid film Reynolds number is defined as

Ref =
(1− αvap)ρliquliqDh

µliq
, (601)

and the effective Weber number for entrainment is defined as

Wevap =
ρvapj

2
vapDh

σ

(
∆ρ

ρvap

)1/3

, (602)

with jvap being the superficial velocity of the vapor phase. The superficial phasic veloci-
ties, or phasic volumetric fluxes, are defined to be

jk = αkuk

for k = {liq, vap}.

For large diameter pipes, (Dh > 3.2 cm), the entrained fraction is modeled as

E∞ = 0.015 + 0.44 log10

[
0.9245

(
π2

π2,crit

)2
]
, (603)

where π2 is the non-dimensional vapor velocity that is defined as

π2 =
jvapµvap

σ

√
ρvap
ρliq

, (604)

and π2,crit = 2.46 × 10−4 is the inception criteria for liquid droplet entrainment. In code
implementation, the value of 0.9245 (π2/π2,crit)

2 is limited to be larger than 10−10, and the
final value of entrained fraction, E∞, is limited to be larger or equal to zero.

Following TRACE [2], the interfacial drag coefficient for the droplets is modeled as

Ci,drop = CDAint,d
1

2
ρvap (605)

= CD ρvap
3αcαd
4dd

, (606)

where αc is the volume fraction of the annular core region (containing vapor and droplets),
and αd is the fraction of the annular core occupied by the droplets alone. For this equation,
the following relation for the projected area of droplets per unit mixture volume was used:

Aint,d =
3

2

αvapαd
(1− αd)dd

. (607)
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The drop drag coefficient is modeled as

CD =
24

Red

(
1 + 0.1Re0.75

d

)
, (608)

with the drop Reynolds number defined as

Red =
ρvap|uvap − ud|dd

µm
. (609)

Here, dd is the droplet Sauter mean diameter, and µm is the mixture viscosity. The mixture
viscosity is given by

µm =
µvap

(1− αd)2.5
. (610)

The fraction of the annular vapor core occupied by the droplets is approximated by

αd = E∞
|jliq|
|jvap|

. (611)

To avoid numerical issues, the denominator is modified to |jvap| + 10−6. The value of αd
is also limited by

αd ≤ E∞(1− αvap) , (612)

where again, jliq and jvap are the superficial velocities of the two phases. The Sauter mean
diameter is modeled as

dd = 0.008

(
σ

ρvapj2
vap

)
Re2/3

vap

(
µvap
µliq

)2/3(
ρvap
ρliq

)−1/3

, (613)

where the gas Reynolds number is defined as

Revap =
ρvap|jvap|Dh

µvap
. (614)

In addition, the Sauter mean diameter is limited to be

84µm ≤ dd ≤ 4 mm . (615)

The drop relative velocity, ur,d ≡ uvap − ud, is modeled as

ur,d =

1.718
√
dd

[
g∆ρ
ρvap

]1/2

(1− αd)1.5 dd ≤ dd,Newton
√

2
[
σg∆ρ
ρ2
vap

]1/4

(1− αd)1.5 dd > dd,Newton

, (616)
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with

dd,Newton = 0.678

√
σ

g∆ρ
= 0.678Ca . (617)

When ur,d is used to calculate droplet Reynolds number, its value is also defined to be
larger than 10−6 m/s to avoid a zero-valued Reynolds number that causes numerical issues
when evaluating the drop drag coefficient, CD.

7.2.1.3 Mixing of Bubbly/Slug and Annular/Mist Flows Finally, in order to avoid a
discontinuous change of the interfacial drag coefficient between the combined bubbly/slug
flow regime and the annular/mist flow regime, the interfacial coefficient is averaged using
a simple power law weighting scheme:

Ci =
√
C2
i,BS + C2

i,AM , (618)

where the subscripts BS and AM stand for bubbly/slug and annular/mist flow conditions,
respectively.

7.2.1.4 Horizontal Stratified Flow For horizontal stratified flow conditions, the inter-
facial drag coefficient is given as

Ci,strat =
1

2
ρvapfiAint . (619)

The interfacial area per unit volume is defined as

Aint =
Sint
A

, (620)

with Sint defined the same as in Equation (557). Following TRACE [2], the interfacial
friction factor is given as

fi = 1.84fwall,v , (621)

where fwall,v is the single-phase wall drag friction factor for the gas phase. Its value is
evaluated using the Churchill formula with the gas phase Reynolds number,

Revap =
ρvapuvapDh,vap

µvap
, (622)

where the gas phase hydraulic diameter Dh,vap is calculated using Equation (554).
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7.2.1.5 Transition between Horizontal Stratified and Non-Stratified Flow If the
flow regime is considered to be in a transition between stratified and non-stratified condi-
tion, a power law based interpolation is used:

Ci = Cn
i,stratC

1−n
i,non-strat , (623)

where subscripts ‘strat’ and ‘non-strat’ correspond to stratified flow and non-stratified flow
conditions, respectively. The exponent, n, is set to wfstrat, defined in Equation (565).

7.2.2 Post-CHF Flow Regimes

The post-CHF regimes are defined when the surface temperature exceeds the Leiden-
frost point, where the liquid phase cannot contact the hot surface. As in TRACE [2],
the post-CHF regimes take place between the bottom quench front and the top quench
front. The post-CHF flow regimes include inverted annular, inverted slug, and dispersed
flow regimes. As in TRACE [2], the post-CHF flow regimes are void-fraction-dependent,
as illustrated in Figure 7.

7.2.2.1 Inverted Annular Flow For the inverted annular regime (void fraction below
0.6), the interfacial drag coefficient is given by

Ci,IA =
1

2
ρvapfi,IAAint , (624)

where the subscript IA represents inverted annular flow condition. Aint is the interfacial
area per unit volume and fi,IA is the interfacial friction factor. Assuming the liquid core is
circular, the interfacial area per unit volume can be calculated as

Aint = 4

√
1− αvap
Dh

. (625)

The interfacial friction factor, fi,IA, is calculated as a power-law-averaged value of both
the smooth and wavy interface conditions:

fi,IA =
√
f 2
i,smooth + f 2

i,wavy , (626)

where fi,smooth is for the laminar flow with a smooth interface, and fi,wavy is for the case
with a way interface:

fi,smooth =
144

(δ∗)3
, (627)
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Figure 7. Post-CHF flow regime map [2].

fi,wavy = 0.35

(
δ

La

)0.72

. (628)

The vapor film thickness is calculated as

δ =
Dh

2

(
1−

√
1− αvap

)
(629)

for pipe geometry, and

δ =
Dh

2


√√√√1 + αvap

[
4

π

(
P

Dr

)2

− 1

]
− 1

 (630)

for rod bundle geometry. The non-dimensional vapor film thickness for evaluating the
smooth interface interfacial friction factor is

δ∗ = δ

(
ρvapg∆ρ

µ2
vap

)1/3

. (631)
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The Laplace number is given by

La =

√
σ

g∆ρ
. (632)

7.2.2.2 Inverted Slug Flow For the inverted slug regime, the interfacial drag coeffi-
cient is given by

Ci,IS =
1

24

ρvap
La

1− αvap
α1.8
vap

, (633)

following the recommendation made in the TRACE manual [2] that the coefficient has
been adjusted to better match FLECHT-SEASET high flooding rate reflood data.

7.2.2.3 Dispersed Flow For the post-CHF dispersed flow regime, the interfacial drag
coefficient is given by

Ci,DF =
1

2
ρvapCD,MPAint,p , (634)

where CD,MP is the drag coefficient corrected from multi-particle effects and Aint,p is the
projected area per unit volume. The projected area per unit volume is calculated from the
droplet Sauter mean diameter by

Aint,p =
6(1− αvap)

4dSM
. (635)

The Sauter mean diameter is estimated as about one-third of the maximum droplet diame-
ter:

dSM =
1

3
dmax . (636)

The maximum droplet diameter is modeled differently for downflow and upflow condi-
tions. For downflow condition, the maximum droplet diameter is estimated as

dmax,down = min [3.52La, Dh] . (637)

For upflow condition, the maximum droplet diameter is estimated as

dmax,up = min

[
5.07LaN0.176

µg ,
18σ

ρvapj2
vap

, dmax,down

]
. (638)

The multi-particle drag coefficient can be obtained from the single-particle model:

CD,MP =
CD,SP

α1.8
vap

. (639)
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The single-partical drag coefficient is calculated as

CD,SP = max

[
24

Red

(
1 + 0.15Re0.687

d

)
, 0.44

]
, (640)

where the drop Reynolds number is defined by

Red =
ρvapVrdSM
µvap,film

. (641)

The relative velocity, Vr, is calculated as

Vr = max

[
|uvap − uliq|

α1.4
vap

, V∞

]
, (642)

where V∞ is the terminal velocity for large spherical drops. The vapor-phase viscosity,
µvap,film, should be estimated at the film temperature given by

Tfilm =
Tvap + Tsat

2
. (643)

The non-dimensional terminal velocity for large spherical drops is modeled as

V ∗∞ = 0.693 (r∗)0.858 , (644)

with

V ∗∞ = V∞

[
ρ2
vap

µvapg∆ρ

]1/3

, (645)

and

r∗ = r

[
ρvapg∆ρ

µ2
vap

]1/3

, (646)

where r is the droplet radius.

7.2.2.4 Transition between Inverted Annular and Inverted Slug Flow Regimes For
void fractions between 0.6 and 0.9 under post-CHF condition, an interpolation region is
applied between the inverted annular and inverted slug flow regimes. In this transition
regime, the interfacial drag coefficient is computed as

Ci = wfIACi,IA + (1− wfIA)Ci,IS , (647)

where wfIA is a spline weighting factor for inverted annular flow, given by

wfIA = x(2− x) , (648)

where
x =

0.9− αvap
0.9− 0.6

. (649)
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7.2.2.5 Transition between Inverted Slug and Dispersed Flow Regimes The transi-
tion between the inverted slug and dispersed flow regimes is determined from the liquid
entrainment fraction. In this transition region, part of the liquid phase is considered to be
entrained in the dispersed droplet form, and the remaining part is considered to be inverted
slugs. The interfacial drag coefficient is modeled with a linear interpolation:

Ci = ECi,DF + (1− E)Ci,IS , (650)

where E is the entrainment fraction. The entrainment fraction is defined as

E =
Gd

Gliq

, (651)

where Gd is the entrained mass flux, and Gliq is the magnitude of the liquid phase mass
flux. In code implementation, Gliq is taken as the larger value between |αliqρliquliq| and
10−10. As suggested in the TRACE manual [2], the entrained mass flux is modeled as

Gd =

0 jvap ≤ jvap,crit

2.16× 10−4

[(
jvap

jvap,crit

)3

− 1

]
N0.236
µg ∆ρjvap jvap > jvap,crit

, (652)

where jvap,crit is the critical vapor phase superficial velocity:

jvap,crit = 0.6

[
σ0.316g0.228∆ρ0.228

ρ0.456
vap µ

0.0879
vap

]
. (653)

The value of the entrainment fraction is also limited to be smaller or equal to 1.

7.3 Interfacial Heat Transfer

When the two phases are under thermal non-equilibrium conditions, the temperature dif-
ference between the two phases drives heat transfer towards their interface, which conse-
quently leads to mass transfer (via evaporation or condensation) on the interface. Recall
that the interfacial mass transfer term is modeled as

Γintliq→vapAint =
hconv,liqAint(Tliq − Tint) + hconv,vapAint(Tvap − Tint)

hvap,int − hliq,int
. (654)

For two-phase flow, the volumetric heat transfer coefficient, Hik = hconv,kAint, is dis-
cussed in this section for both pre-CHF and post-CHF flow regimes.
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7.3.1 Pre-CHF Flow Regimes

Similar to interfacial drag, interfacial heat transfer correlations distinguish the follow-
ing pre-CHF flow regimes: bubbly, cap/slug, annular/mist flow, and transition. The flow
regime map for vertical pipes under pre-CHF conditions is shown in Fig. 8.
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Figure 8. Flow regime map in vertical pipes under the pre-CHF
conditions, for interfacial heat transfer [2].

7.3.1.1 Bubbly Flow For the bubbly flow regime, only the dispersed bubbles con-
tribute to the interfacial heat transfer, and thus

(hconv,liqAint)Bubbly = (hconv,liqAint)DB . (655)

Here, subscript DB stands for the dispersed bubbly flow. When evaluating interfacial heat
transfer, the bubbly flow regime is defined as

αvap < αvap,DB , (656)
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where αDB is modeled as

αvap,DB =


0.3 G ≤ 2000 kg/m2s

0.3 + 0.2
(

G−2000
2700−2000

)
2000 < G < 2700 kg/m2s

0.5 G ≥ 2700 kg/m2s

, (657)

and G is the total mass flux of the two phases.

The interfacial area for the dispersed bubbles is simply modeled as

Aint,DB =
6αvap
dDB

, (658)

where the diameter of the dispersed bubbles is approximated by

dDB = 2 La = 2

√
σ

g∆ρ
, (659)

where La is the the Laplace coefficient.

This value is limited to be in the range

10−4 m ≤ dDB ≤ 0.9Dh , (660)

where Dh is the hydraulic diameter of the channel.

For the heat transfer between the liquid and bubble interface, in both evaporation and
condensation, the heat transfer coefficient is

hconv,liq,DB =
kliq
dDB

NuDB , (661)

where the Nusselt number is given by

NuDB = 2.0 + 0.6Re
1/2
DB Pr

1/3
liq (662)

and Prliq is the Prandtl number of the liquid phase.

The bubble Reynolds number, ReDB, defined as a function of the dispersed bubble
relative velocity, is

ReDB =
ρliqur,DBdDB

µliq
. (663)
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The relative velocity between the dispersed bubble and liquid phase is limited to be smaller
than its terminal velocity:

ur,DB = min (|uvap − uliq|, uDB, term) . (664)

The terminal velocity can be calculated as

uDB, term = ur,∞(1− αvap)1.39 , (665)

where ur,∞ is, for a single distorted particle,

ur,∞ =
√

2

(
σg∆ρ

ρ2
liq

)1/4

. (666)

The heat transfer between the vapor and bubble interface is simplified by using a con-
stant value,

hconv,vap = 1000 W/m2K . (667)

7.3.1.2 Cap Bubble/Slug Flow For the cap bubble/slug flow regime, defined by the
boundary αvap,DB ≤ α ≤ 0.5, the interfacial heat transfer consists of contributions of both
small dispersed bubbles and of large bubbles:

(hconv,liqAint)CS = (hconv,liqAint)DB + (hconv,liqAint)LB , (668)

where subscripts CS and LB denote cap/slug flow and large bubble, respectively. For the
small dispersed bubbles, the heat transfer coefficient between the liquid and the bubble
interface is calculated the same way as in the bubbly flow regime. However, in the cap
bubble/slug flow regime, the interfacial area for the small dispersed bubbles are calculated
differently:

Aint,DB =
6αvap,DB

dDB

(
1− αvap

1− αvap,DB

)
. (669)

The interfacial area associated with the large bubbles is computed as

Aint,LB =
C∗

D∗

(
αvap − αvap,DB

1− αvap,DB

)
. (670)

Here the coefficient C∗ and the diameter D∗ depend on the channel hydraulic diameters:

C∗ =

{
4.5; Dh < Dh,crit

16; Dh ≥ Dh,crit

, (671)
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and

D∗ =

{
Dh; Dh < Dh,crit

Dh,crit; Dh ≥ Dh,crit

, (672)

where Dh,crit = 50La, defined in Equation (632).

For these large bubbles, the heat transfer coefficient between the liquid and the bubble
interface is calculated as

hconv,liq,LB =
kliq
D∗

NuLB , (673)

where the Nusselt number, NuLB, is calculated using Equation (662), with a modified
bubble Reynolds number that is defined as

ReLB =
ρliqur,LBD

∗

µliq
. (674)

The relative velocity of the large bubbles is defined as

ur,LB = min (|uvap − uliq|, uLB, term) , (675)

and the terminal velocity for the large bubbles are calculated as

uLB, term =


ur,∞ d∗LB < 0.125

1.13ur,∞e
−d∗LB 0.125 ≤ d∗LB < 0.6

0.496ur,∞√
d∗LB

d∗LB ≥ 0.6

. (676)

Here the non-dimensional bubble diameter is defined as

d∗LB =
D∗

Dh

, (677)

and a relative velocity in an infinite medium is given by

ur,∞ =

√
2

2

√
g∆ρD∗

ρliq
. (678)

For the cap bubble/slug flow regime, the heat transfer between the vapor and the bubble
interface are calculated similarly to that from the liquid phase to the bubble interface:

(hconv,vapAint) = hconv,vap(Aint,DB + Aint,LB) , (679)

and the same constant value of 1000 W/m2K is used for hconv,vap.
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7.3.1.3 Correction for Subcooled Boiling When subooled boiling is present, TRACE
[2] recommends a correction factor for the volumetric heat transfer coefficient of the liquid
phase for the dispersed bubble part. The subcooled boiling condition is determined by the
following two conditions:

Γwallliq→vap > 0 , (680)

and
Tliq < Tsat . (681)

Here, Tsat is set to be Tint. Under subcooled boiling condition, the volumetric heat transfer
coefficient of the liquid phase for the dispersed bubble part is given by

(hconv,liqAint)DB = (1− wfSB)(hconv,liqAint)DB + wfSB(hconv,liqAint)SB , (682)

in which (hliAint)SB is modeled as

(hconv,liqAint)SB = 0.075hfg
ρliqρvap

∆ρ
max(10−4, αvap) . (683)

The subcooled boiling weighting factor is defined as

wfSB = max {0,min[1, 10(0.2− αvap)]} . (684)

Note that such a correction factor is not applied to the vapor phase.

7.3.1.4 Annular/Mist Flow For the annular/mist flow regime, the interfacial heat trans-
fer consists of the sum of two components, corresponding to the annular liquid film and
entrained liquid droplets,

(hconv,liqAint)AM = (hconv,liqAint)film + (hconv,liqAint)drop . (685)

The film thickness is computed as

δ =
Dh

2

(
1−√αvap

)
, (686)

but this value is limited to be greater than 10 µm. The interfacial area associated with
the liquid film is calculated as a function of the volume fraction of the vapor phase and
hydraulic diameter:

Aint =
4

Dh

√
αvap . (687)
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For a special case where the surface is considered to be partially wetted by the liquid
film, the interfacial area is modified to consider the partially wetted condition, such that

Aint =
4

Dh

√
αvapfwet , (688)

where the fraction of the surface wetted by the liquid film, fwet, is estimated by

fwet =
(1− αvap)Dh

4(25× 10−6)
. (689)

The surface is considered to be partially wetted when the liquid film thickness reaches the
minimum critical value, 25 µm.

The liquid-film-to-interface heat transfer, hconv,liq,film, is modeled by using a power-law
weighting of the turbulent and laminar regimes:

hconv,liq,film =
(
h2
conv,liq,film,lam + h2

conv,liq,film,turb

)1/2
. (690)

The correlation for the laminar regime is based on the Kuhn-Schroch-Peterson correlation:

Nuconv,liq,film,lam = 2(1 + 1.83× 10−4Ref ) , (691)

where the film Reynolds number is calculated as

Ref =
GliqDh

µliq
, (692)

and Gliq is the liquid phase mass flux. For the turbulent regime, the Gnielinski correlation
is used with a multiplier:

Nuconv,liq,film,turb = 0.7NuGnielinski . (693)

The Gnielinski correlation will be discussed in the wall heat transfer section. For both the
laminar and turbulent regimes, the heat transfer coefficient is related to the Nusselt number
using the film thickness as reference length scale:

Nuconv,liq,film,lam/turb =
hconv,liq,film,lam/turbδ

kliq
. (694)

For the liquid film part, the vapor-core-to-liquid-film-interface heat transfer coefficient
is modeled as

hconv,vap,film =
kvap
Dc

Nuconv,vap , (695)
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where Dc is the diameter of the annular vapor core approximated by

Dc ≈
√
αvapDh . (696)

The vapor-interface Nusselt number is modeled by the Dittus-Boelter correlation, and
is limited to be larger than 4:

Nuconv,vap = max{4, 0.23Re0.8
c Pr0.4

vap} , (697)

where the Reynolds number for the annular vapor core is calculated as

Rec =
GvapDc

µvap
, (698)

and Gvap is the mass flux of the vapor phase, and Prvap is the Prandtl number of the vapor
phase.

For the droplets, the volumetric interfacial area density is modeled as

Aint,drop =
6αvapαd

(1− αd)dd
, (699)

for which αd is the fraction of the annular core region occupied by the droplets, and dd is
the droplet size. Both of these two quantities have been discussed in the interfacial drag
model section, in Equations (611) and (613), respectively.

The liquid-to-interface heat transfer coefficient for the droplets is modeled as

hconv,liq,drop = 2π2kliq
dd

. (700)

The vapor-to-interface heat transfer coefficient for the droplets part is modeled as

hconv,vap,drop =
Nuconv,vap,dropdd

kvap
, (701)

where Nuconv,vap,drop is the Nusselt number, modeled as

Nuconv,vap,drop = 2 +
√
u∗maxPé , (702)

where u∗max is the maximum dimensionless circulation velocity at the surface of the drop.
Here Pé is the droplet Peclet number, defined by

Pé ≡ ρvapcp,vapddur
kvap

, (703)
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where ur is the drop relative velocity, defined as

ur = 2.462

√
g∆ρdd
2ρvap

. (704)

The maximum dimensionless circulation velocity at the surface of the droplet, u∗max, is
defined as

u∗max =
1.5

1 + 2.8(1+2λ)(2+3κ)

(2+3λ)
√

Red

, (705)

where
Red =

ρvapurdd
µvap

, (706)

λ =

√
ρliqµliq
ρvapµvap

, (707)

and
κ =

µliq
µvap

. (708)

The drop Reynolds number, Red, is limited to be in the range 0.5 ≤ Red ≤ 200. The
maximum dimensionless circulation velocity at the surface of the drop, u∗max, is limited to
be in the range 0.0001 ≤ u∗max ≤ 1.0.

7.3.1.5 Transition between Bubbly/Slug and Annular/Mist Flow For the transition
region, i.e., 0.5 ≤ αvap ≤ 0.75, a simple linear interpolation is used to determine the in-
terfacial heat transfer coefficients:

(hconv,kAint) = wfAM(hconv,kAint)AM + (1− wfAM)(hconv,kAint)BS , (709)

where the weighting factor is defined by

wfAM =
αvap − 0.5

0.75− 0.5
. (710)

The value of (hconv,kAint)AM is calculated using the annular/mist flow regime model. The
value of (hconv,kAint)BS is calculated using either the dispersed bubble flow regime model
or the cap/slug model, depending on the two-phase flow mass flux (see Figure 8).
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7.3.1.6 Horizontal Stratified Flow When the flow is considered to be horizontal strat-
ified flow, the volumetric interfacial heat transfer coefficients are calculated as

(hconv,kAint)strat = hconv,k,stratAint,strat . (711)

The interfacial area density, Aint,strat, is obtained as

Aint,strat =
Sint
A

, (712)

with Sint being the width of the stratified two-phase interface; see Equation (557) and
Figure 6. The liquid side interfacial heat transfer coefficient is modeled as

hconv,liq,strat =
kliq
hliq

Nuconv,liq , (713)

where hliq is the liquid level, see Equation (559) and Figure 6. The Nusselt number,
Nuconv,liq, for the liquid phase interfacial heat transfer coefficient is calculated the same
way as it is calculated for the annular/mist flow regime, namely, Equations (690), (691),
and (693). The liquid phase Reynolds number used in these equations is the same as
defined in Equation (552). Following TRACE [2], the final value of hconv,liq,strat is limited
to be smaller than 2.5× 104.

For the vapor phase, the volumetric interfacial heat transfer coefficient is simply cal-
culated as

(hconv,vapAint)strat = 1000Aint,strat . (714)

7.3.1.7 Transition between Stratified and Non-Stratified Flow If the flow regime is
considered to be in a transition between stratified and non-stratified condition, a power law
based interpolation is used:

(hconv,kAint) = (hconv,kAint)
n
strat(hconv,kAint)

(1−n)
non-strat , (715)

where subscripts ‘strat’ and ‘non-strat’ represent for stratified flow and non-stratified flow
conditions, respectively. The exponent, n, is set equal to wfstrat, given by Equation (565).

7.3.2 Post-CHF Flow Regimes

For post-CHF flow regimes, interfacial heat transfer coefficients must be defined in the
following flow regimes: inverted annular, inverted slug, dispersed flow regimes, and tran-
sition regimes between them. The flow regime map for post-CHF interfacial heat transfer
is shown in Figure 7.
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7.3.2.1 Inverted Annular Flow Under post-CHF condition, if the void fraction is
smaller than 0.6, the flow is treated as inverted annular flow. Assuming that the liquid
core takes a cylindrical shape, its diameter can be obtained as

Dc =
√

1− αvapDh , (716)

and the interfacial area can be obtained as

Aint =
√

1− αvap
4

Dh

. (717)

If the liquid core is in subcooled condition, following TRACE [2], the liquid phase inter-
facial heat transfer coefficient is simply calculated as

hconv,liq =
Nuconv,liqkliq

Dc

, (718)

with Nuconv,liq = 100. If the liquid core is in superheated condition, a correction factor for
superheating condition is used, and the liquid phase interfacial heat transfer coefficient is
corrected as

hconv,liq = hconv,liq [1 + ∆Tsup(250 + 50∆Tsup)] , (719)

where ∆Tsup is the liquid superheat.

For the vapor phase interfacial heat transfer coefficient, the vapor film thickness, δ,
must be determined first from Equation (629) for tube geometry, and Equation (630) for
rod bundle geometry. Following TRACE [111], the vapor phase interfacial heat transfer
coefficient is then calculated as

hconv,vap = 2
kvap
δ

. (720)

7.3.2.2 Inverted Slug and Dispersed Flow Under post-CHF conditions, if the void
fraction is larger than 0.9, the flow is treated as inverted slug flow, dispersed flow, or a
transition regime between them, depending on the liquid entrainment fraction. Thus, the
interfacial heat transfer coefficients in these regimes are modeled as

(hconv,kAint) = (1− E)(hconv,kAint)IS + E(hconv,kAint)DF , (721)

where subscripts IS and DF denote inverted slug and dispersed flow conditions, respec-
tively.
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For dispersed flow condition, the interfacial area density is modeled as

Aint =
6(1− αvap)

dSM
, (722)

where dSM is the droplet Sauter mean diameter, see Equation (636). For the liquid phase
interfacial heat transfer coefficient, the same correlation for annular/mist flow droplet filed
is used, i.e., Equation (700) with dd replaced by dSM. Again, the liquid phase superheated
condition needs to be considered, similar to the inverted annular flow condition. Putting
this together, the liquid phase interfacial heat transfer coefficient becomes

hconv,liq = 2π2 kliq
dSM

[1 + ∆Tsup(250 + 50∆Tsup)] . (723)

The vapor phase interfacial heat transfer coefficient is modeled as

hconv,vap =
kvap
dSM

Nud , (724)

with Nud being the droplet Nussult number. Following TRACE [2], Nud is modeled as

Nud =
2 + 0.57Re

1/2
d Pr1/3

vap

(1 +Bf )0.7
. (725)

The droplet Reynolds number, Red, is defined as

Red =
ρvapVrdSM

µvap
, (726)

with
Vr = min

[
|uvap − uliq|, V∞α1.4

vap

]
. (727)

The single-particle terminal velocity, V∞, is modeled as

V∞ = 0.6
σ0.316(g∆ρ)0.228

ρ0.456
vap µ

0.0879
vap

. (728)

Following TRACE [2], the blowing factor is simply approximated as

Bf =
hvap − hvap,sat

hfg
. (729)
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For inverted slug flow, the interfacial area density is calculated as

Aint =
4.8104(1− αvap)

dIS
, (730)

where dIS is the diameter of the ligament, with subscript IS denoting inverted slug flow
condition. Following TRACE [2], dIS is approximated as

dIS = 0.6325Dh . (731)

The liquid phase interfacial heat transfer coefficient is modeled in a two-step manner. First,
it is calculated the same way as it is done for the dispersed flow, i.e., Equation (723) with
dSM replaced by dIS. Second, the coefficient is corrected with an enhancement factor:

hconv,liq = hconv,liq,14 min

[
1,

(
dIS

dRT

)2
]
, (732)

in which hconv,liq,1 is the interfacial heat transfer coefficient calculated from the first step.
Following TRACE [2], the Sauter mean diameter for a distribution having a maximum
diameter that is stable against the Rayleigh-Taylor instability, dRT, is modeled as

dRT =
3.52

4

√
σ

g∆ρ
. (733)

For the vapor phase interfacial heat transfer coefficient, the same model used in the dis-
persed flow regime is used, i.e., Equation (724). Note that in both Equations (724) and
(726), dSM is replaced by dIS.

7.3.2.3 Interpolation Region For the interpolation region, which is defined between
void fraction 0.6 and 0.9, linear interpolation is used to obtain interfacial heat transfer
coefficients,

(hconv,kAint) = wfIA(hconv,kAint)IA + (1− wfIA)(hconv,kAint)IS−DF (734)

in which subscripts IA and IS-DF denote inverted annular and inverted slug-dispersed
flow conditions, respectively. Recall that, (hconv,kAint)IS−DF is calculated as entrainment
fraction weighted function of inverted slug and dispersed flow interfacial heat transfer
coefficients, i.e., Equation (721). The final expression for the interpolation region is

(hconv,kAint) = wfIA(hconv,kAint)IA+(1−wfIA) [(1− E)(hconv,kAint)IS + E(hconv,kAint)DF] .
(735)
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The weighting function, wfIA, is modeled as

wfIA = 2xIA − x2
IA , (736)

with
xIA =

0.9− αvap
0.9− 0.6

. (737)

7.4 Wall Heat Transfer

For the 7-equation two-phase flow model presented in Section 3.1, the wall heat transfer
model is required both in the determination of the heat transferred from solid surfaces,
and also the rate of vapor phase generation occurring near those surfaces. Currently, a
simplified heat flux partitioning model is used to determine the mass transfer associated
with wall boiling. Recall that,

Qwall,liq,boil = fboilhwall,`(Twall − Tliq)κPhf , (226)

Qwall,liq,conv = (1− fboil)hwall,`(Twall − Tliq)κPhf , (225)

Qwall,vap = hwall,v(Twall − Tvap)(1− κ)Phf , (223)

and the total wall heat flux balance is given as

Qwall,total = Qwall,liq,boil +Qwall,liq,conv +Qwall,vap . (222)

The wall boiling mass transfer is then determined as

Γwallliq→vap =
Qwall,liq,boil[

evap,sat(p̄int) + p̄int
ρvap,sat(p̄int)

]
− hliq(ρliq, eliq)

. (738)

The main purpose of this section is to describe the phasic heat transfer coefficient hwall,k for
both the pre-CHF and post-CHF conditions. More details on wall heat flux partitionings
(parameters β and κ) can be found in Section 3.1.
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7.4.1 Pre-CHF Wall Heat Transfer

For pre-CHF wall heat transfer, the logic to determine which heat transfer mode is shown
in Figure 9.

7.4.1.1 Single-Phase Liquid Flow For single-phase liquid flow condition, the wall
heat transfer coefficient, hw,liq, is taken to be the maximum value of laminar flow, tur-
bulent flow, and natural circulation condition:

hwall,` = max {hlam, hturb, hNC} , (739)

in which the subscripts lam, turb, and NC stand for laminar flow, turbulent flow, and
natural circulation flow conditions, respectively. They are discussed for both the tube and
rod bundle geometries.

7.4.1.1.1 Tube Geometry For tube geometry, the laminar flow heat transfer coef-
ficient is calculated as

hlam = Nulam
kliq
Dh

, (740)

where Nulam is set to be constant for all cases: Nulam = 4.36.

For tube geometry, following TRACE [2], the turbulent flow heat transfer coefficient
is modeled with the Gnielinski correlation and corrected by a temperature factor. The
Gnielinski correlation is given by

NuGnielinski =
(f/2)(Re− 1000) Pr

1 + 12.7(f/2)1/2
(

Pr2/3−1
) , (741)

where the friction factor, f , is given as

f = [1.58 ln(Re)− 3.28]−2 (742)

Under single-phase liquid flow condition, the corresponding Reynolds number is defined
as

Reliq =
ρliquDh

µliq
(743)
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Figure 9. Logic to determine pre-CHF wall heat transfer mode
following TRACE [2].
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and is limited to be larger than 1000. The Nusselt number obtained from Equation (741)
is then corrected with a correction factor as

Nuturb = NuGnielinski

(
Prliq
Prw

)0.11

, (744)

in which Prliq is the Prandtl number evaluated with liquid phase temperature, and Prw is
the Prandtl number evaluated with wall temperature. The value of Prliq/Prw is limited in
the range of [0.05, 20].

For tube geometry, following TRACE [2], the natural circulation heat transfer coeffi-
cient is taken as the larger one between the laminar flow and turbulent flow conditions:

NuNC = max (NuNC,lam,NuNC,turb) , (745)

with

NuNC,lam = 0.59

(
Grliq Pr

liq

)1/4

, (746)

and

NuNC,turb = 0.13

(
Grliq Pr

liq

)1/3

. (747)

In both equations, the liquid phase Grashof number is defined as

Grliq =
gβliq∆TD

3
h

(µliq/ρliq,film)2 , (748)

where
∆T = |Tw − Tliq| , (749)

and ρliq,film is the liquid density evaluated from the film temperature:

Tfilm = 0.5(Tw + Tliq) . (750)

7.4.1.1.2 Rod Bundle Geometry For rod bundle geometry, the laminar flow wall
heat transfer coefficient is taken as the larger between the value by the El-Genk laminar
formula and the value by the Kim & Li formula [2]:

hlam = max (hEG,lam, hKL,lam) , (751)
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where the subscripts EG and KL denote the El-Genk laminar formula and Kim & Li
formula, respectively. The El-Genk laminar formula is given by

NuEG,lam = AReB
0.33

Pr , (752)

where

A = 2.97− 1.76(P/Dr)

B = 0.56(P/Dr)− 0.30
. (753)

Following TRACE [2], a curve-fitted formula is given to represent the Kim & Li tabular
data:

NuKL,lam = −5.6605

(
P

Dr

)2

+ 31.061

(
P

Dr

)
− 24.473 . (754)

In both equations, P/Dr is the pitch-to-diameter ratio for the rod bundle geometry.

For rod bundle geometry, the turbulent flow wall heat transfer coefficient is modeled
using the El-Genk turbulent formula, and then corrected by taking into consideration the
wall temperature effect. The El-Genk turbulent correlation is given by

NuEG,turb = CEGRe
0.8Pr0.33 , (755)

where

CEG = 0.028

(
P

Dr

)
− 0.006 . (756)

Again, P/Dr is the pitch-to-diameter ratio. The wall temperature effect is then considered,
and the final form becomes

Nuturb = NuEG,turb

(
Prliq
Prw

)0.11

, (757)

with Prliq /Prw limited in the range of [0.05, 20].

For rod bundle geometry, the natural circulation wall heat transfer coefficient is mod-
eled with the Sarma’s formulation, as suggested by TRACE [2]

NuNC = 0.7

(
GrD Pr

liq

)1/4

(758)

where the Grashof number is defined the same as Equation (748), and the same wall tem-
perature effect is considered.
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7.4.1.2 Two-Phase Forced Convection Following TRACE suggestion [2], with re-
spect to single-phase forced convection flow condition, the primary role of two-phase
forced convection enhancement is to correct the liquid Reynolds number. Thus, for two-
phase forced convection flow condition, the same single-phase forced convection formulas
are used, with a modified liquid phase Reynolds number:

Re2Φ =
ρliquliqDh

µliq
. (759)

Note that, under two-phase forced convection condition, the wall heat transfer coefficient
is applied to the liquid phase only, and thus, hwall,v = 0.

7.4.1.3 Film Condensation For film condensation condition, the wall heat transfer is
assumed to take place between the wall and the liquid phase, and

hwall,` =
kliq
δ

Nuw,liq , (760)

in which δ is the film thickness, given by

δ =
Dh

2
(1−√αvap) (761)

and is limited to be greater than 10 µm.

The Nusselt number, Nuw,liq, is computed using a power-law-based weighting function
as

Nuw,liq =
(
Nu2

lam + Nu2
turb

)1/2
, (762)

where the subscripts ‘lam’ and ‘turb’ denote laminar flow and turbulent flow conditions,
respectively. Following TRACE suggestion [2], the Kuhn-Shrock-Peterson (K-S-P) corre-
lation is used for the laminar flow condition:

Nulam = 2
(
1 + 1.83× 10−4Ref

)
, (763)

with Ref defined as

Ref =
αliqρliquliqDh

µliq
. (764)

For turbulent flow condition, the El-Genk correlation, Equation (755), is used, with a 1/4
correction factor:

Nuturb =
1

4
NuEG,turb . (765)

The same liquid phase Reynolds number, Ref , is used in the El-Genk correlation. Again,
for vapor phase, the wall heat transfer coefficient is taken as zero: hwall,v = 0.
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7.4.1.4 Transition between Two-Phase Forced Convection and Film Condensation
As shown in Figure 9, for void fractions between 0.8 and 0.9, a linear interpolation is used
between the two-phase forced convection value and the film condensation value:

hwall,` = wfannhann + (1− wfann)h2Φ , (766)

in which hann is the film condensation wall heat transfer coefficient, and h2Φ is the two-
phase forced convection wall heat transfer coefficient. The weighting factor, wfann is
defined as

wfann =
αvap − 0.8

0.9− 0.8
. (767)

7.4.1.5 Wall Boiling Heat Transfer For pre-CHF condition, when wall temperature
exceeds the onset-of-nucleate-boiling (ONB) temperature, TONB, the wall heat transfer
mode becomes subcooled nucleate boiling or nucleate boiling, depending on the liquid
phase temperature. In RELAP-7, the wall heat transfer for both modes are modeled the
same.

7.4.1.5.1 Onset of Nucleate Boiling The onset-of-nucleate-boiling temperature is
discussed first. Following TRACE [2], the wall temperature for onset of nucleate boiling
is modeled as

TONB = Tliq +
1

4

(√
∆TONB,sat +

√
∆TONB,sat + 4∆Tsub

)2

, (768)

in which ∆Tsub is the liquid phase subcooling temperature:

∆Tsub = Tsat − Tliq , (769)

and ∆TONB,sat is the wall superheat necessary for the onset of nucleate boiling when the
liquid is at saturation temperature, defined as

∆TONB,sat =
2hFCσTsat

F 2(φ)ρvaphfgkliq
. (770)

In this equation, hFC is the two-phase flow forced-convection wall heat transfer coefficient;
F (φ) is the contact angle correction factor:

F (φ) = 1− exp(−φ3 − 0.5φ) . (771)

Following TRACE [2], a constant value of 38 degrees is taken for the contact angle.
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7.4.1.5.2 Nucleate Boiling Heat Transfer For both subcooled nucleate boiling and
nucleate boiling conditions, the wall heat flux is modeled the same:

q
′′

NB =
[
(q
′′

FC)3 + (q
′′

PB − q
′′

BI)
3
]1/3

, (772)

in which q′′FC is the forced convection wall heat flux component:

q
′′

FC = hFC(Twall − Tliq) , (773)

q
′′
PB is the pool boiling wall heat flux component based on wall temperature, and q

′′
BI is

the pool boiling wall heat flux component at boiling initiation, based on TONB. Following
TRACE [2], the Gorenflo correlation is used to model pool boiling wall heat flux:

q
′′

PB =

[
h0FP
(q
′′
0 )n

] 1
1−n

(Twall − Tsat)
1

1−n , (774)

with h0 = 5600 W/m2K and q′′0 = 20000 W/m2, and

n = 0.9− 0.3P 0.15
r . (775)

FP is pressure dependent and is given as a function of the reduced pressure, Pr:

FP = 1.73P 0.27
r +

(
6.1 +

0.68

1− Pr

)
P 2
r , (776)

with Pr defined as

Pr =
P

Pcrit
, (777)

and Pcrit is the critical pressure.

7.4.2 Post-CHF Wall Heat Transfer

For post-CHF conditions, where wall temperature exceeds the CHF wall temperature,
post-CHF wall heat transfer modes are used, which include inverted annular film boiling,
dispersed flow boiling, a transition between these two boiling conditions, and a transition
boiling mode. The logic of post-CHF wall heat transfer modes is shown in Figure 10.
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Figure 10. Logic to determine post-CHF wall heat transfer mode
following TRACE [2].
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7.4.2.1 Inverted Annular Film Boiling Under post-CHF condition, inverted annular
film boiling is assumed to take place for void fractions smaller than 0.6. For inverted
annular film boiling condition, following the TRACE discussion [2], the wall-to-liquid-
phase heat transfer is approximated to have two components, one being convective heat
transfer component, and the other one being radiative heat transfer component. The con-
vective heat transfer component is simplified from the complex wall-to-vapor-phase and
vapor-to-interface heat transfer relations. Following TRACE, it is modeled as

hwall,liq,Γ =
kvap
δ

Nuwall,liq
Twall − Tsat
Twall − Tliq

, (778)

in which δ is the vapor film thickness, already discussed in Section 7.2. For tube geometry,
Equation (629) is used, and for rod bundle geometry, Equation (630) is used. For tube
geometry, the Nusselt number is modeled as

Nuwall,liq = max
[
0, 0.268(δ∗)0.77 − 0.34

]
, (779)

and for rod bundle geometry, this number is increased with a 30% enhancement:

Nuwall,liq = max
{

0, 1.3
[
0.268(δ∗)0.77 − 0.34

]}
. (780)

The non-dimensional film thickness is given by

δ∗ = δ

(
ρvapg∆ρ

µ2
vap

)1/3

, (781)

with ∆ρ = ρliq − ρvap. Following TRACE, the wall-to-liquid radiation heat transfer coef-
ficient is modeled as

hwall,liq,rad =
q
′′

wall,liq,rad

Twall − Tliq
=
σSB(T 2

wall + T 2
sat)(Twall + Tsat)

1

εliq
√

1−αvap
+
(

1
εwall
− 1
) , (782)

in which σSB is the Stefan-Boltzmann constant, 5.670 × 10−8 Wm−2K−4, and εliq and
εwall are the liquid and the wall emissivities, respectively. As suggested by the TRACE
manual [2], by default, εliq is set to be 0.96, and εwall is set to be 0.7. Finally, the total wall
to fluid heat transfer coefficient is

hwall,` = hwall,liq,Γ + hwall,liq,rad . (783)

For wall-to-vapor heat transfer coefficient, following the TRACE manual, a simple
model is used:

hwall,` = 2
kvap
δ

. (784)
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7.4.2.2 Dispersed Flow Film Boiling As in TRACE [2], under post-CHF conditions,
dispersed flow film boiling is assumed to take place for void fraction greater than 0.9. For
dispersed flow film boiling condition, heat transfer between the wall and the two phases is
modeled in three components:

q
′′

wall = q
′′

wall,liq,rad + q
′′

wall,vap,conv + q
′′

wall,vap,rad , (785)

in which the three terms on the right hand side are the following, respectively: wall-to-
liquid-phase radiation heat flux, wall-to-vapor-phase convective heat flux, and wall-to-
vapor-phase radiation heat flux.

7.4.2.2.1 Wall-to-Vapor-Phase Convective Heat Transfer For dispersed flow film
boiling, wall-to-vapor-phase convective heat transfer is modeled with the single-phase
wall-to-vapor heat transfer with a two-phase enhancement factor:

q
′′

wall,vap,conv =
kvap
Dh

Nuwall,vap,convΨ2Φ(Twall − Tvap) , (786)

in which Nuwall,vap,conv is the single-phase wall-to-vapor convective heat transfer Nusselt
number, and Ψ2Φ is the two-phase enhancement factor. The single-phase wall-to-vapor
convective heat transfer is similar to that of single-phase liquid wall heat transfer with
several modifications. Following TRACE [2], the Nusselt number is taken as the larger
one between a laminar flow value and a turbulent flow value:

Nuwall,vap,conv = max(Nulam,Nuturb) . (787)

TRACE [2] suggests that a superposition method to be used for the laminar flow value:

Nulam =
(
Nu3

lam,FC + Nu3
lam,NC

)1/3
, (788)

in which the subscripts FC and NC stand for forced convection and natural convection,
respectively.

For natural circulation condition, the laminar flow Nusselt number is modeled as

Nulam,NC = 0.13

[
gβvap(Twall − Tvap)D3

h

ν2
vap

Prvap

]1/3

. (789)

For forced convection condition, the laminar flow Nusselt number is first calculated
based on its geometry, and then corrected with a logarithmic ramp-up factor:

Nulam,FC = wfFCNu
′

lam,FC , (790)

187



in which wfFC is the ramp-up factor, defined as

wfFC =
2− log10(Ri)

2
, (791)

with Ri = GrD/Re2
D being the Richardson number, and

GrD =
gβvap(Twall − Tvap)D3

h

ν2
vap

, (792)

ReD =
ρvapuvapDh

µvap
(793)

The Richardson number is limited to be in between 1 and 100. The geometry-based lam-
inar flow Nusselt number, Nu

′

lam,FC, is given as a constant, 4.36, for tube geometry. For
rod bundle geometry, the same correlations used in single-phase liquid flow conditions are
used, i.e., Equation (751).

For turbulent flow of forced convection condition, the Nusselt number, Nuturb, is cal-
culated in a multi-step manner.

Nuturb = Nu
′

turbfwallfentr , (794)

in which Nu
′

turb is the geometry-based turbulence flow Nusselt number. For tube geometry,
the Gnielinski correlation, Equation (741), is used, and for rod bundle geometry, the El-
Genk turbulence correlation, Equation (755), is used. The wall temperature correction
factor, fwall, is defined as

fwall =

(
Twall
Tvap

)n
, (795)

with

n = −
[
log10

(
Twall
Tvap

)]1/4

+ 0.3 . (796)

For the condition that Twall < Tvap, n is set to be -0.36. The entrance effect is taken into
consideration with the entrance correction factor, fentr, that is defined as

fentr = 1 +
2.4254

(L/Dh)0.676
, (797)

in which L is the distance to the entrance, and the value of L/Dh is limited to be greater
than 3.
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Following TRACE [2], the two-phase enhancement factor, Ψ2Φ, is modeled as

Ψ2Φ =

[
1 + 25

(1− αvap)Gr2Φ

Re2
vap

]1/2

, (798)

with

Gr2Φ =
ρvapg∆ρD3

h

µ2
vap

, (799)

with ∆ρ = ρliq − ρvap, and

Revap =
ρvapuvapDh

µvap
. (800)

The value of the two-phase enhancement factor is limited to be smaller than 5.

7.4.2.2.2 Wall-to-Liquid/Vapor-Phase Radiation Heat Transfer Following TRACE,
the wall-to-liquid/vapor-phase radiation heat transfers are modeled as

q
′′

wall,liq,rad = Fwall,liqσSB(T 4
wall − T 4

liq) , (801)

and
q
′′

wall,vap,rad = Fwall,vapσSB(T 4
wall − T 4

vap) , (802)

where σSB is the Stefan-Boltzmann constant, and Fwall,liq and Fwall,vap are the gray body
factors:

Fwall,liq =
1

R2

(
1 + R3

R1
+ R3

R2

) , (803)

and
Fwall,vap =

1

R1

(
1 + R3

R1
+ R3

R2

) , (804)

where
R1 =

1− εvap
εvap(1− εvapεliq)

, (805)

R2 =
1− εliq

εliq(1− εvapεliq)
, (806)

and
R3 =

1

1− εvapεliq
+

1− εwall
εwall

. (807)
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For emissivity of the wall, εwall, the same constant value, 0.7, is used. For emissivities of
the liquid phase and the vapor phase, the formula used in TRACE [111] is used:

εliq = 1− exp
[
−1.11

αliq
ddrop

Lbeam

]
, (808)

and

εvap =

6∑
i=1

ηi

1000σSBT 4
vap

, (809)

with ddrop as the droplet size, given by Equation (636), and

ηi = c1

w3
avg,i

exp(c2wavg/Tvap)− 1
· {1− exp [−min(100, kiu)]} · dwi . (810)

The wave number difference, dwi, and average wave number, wavg, are given as

dwi = wmax,i − wmin,i , (811)

and
wavg =

wmax,i + wmin,i
2

, (812)

with
wmin,1−6 = {195.5, 1283.0, 3399.0, 5043.0, 6942.0, 8468.0} , (813)

and
wmax,1−6 = {804.5, 1892.0, 4008.0, 5652.0, 7551.0, 9077.0} . (814)

Parameter, ki, is given as

ki =
300αi
Tvap

, (815)

in which αi is the absorption coefficient, and

α1−6 = {0.0959, 0.2874, 0.2069, 0.0166, 0.0136, 0.00053} . (816)

The parameter u is given as

u = 9.869× 10−4pvapLbeam , (817)

and the radiation path-length in steam, Lbeam, is given as

Lbeam = 0.9Dh . (818)

The two constants are given as c1 = 3.747 × 10−5 and c2 = 1.4394. Some limitations
are applied to the values of the liquid phase and vapor phase emissivities. If the radiation
path-length in steam is smaller than 10−6 m, the values of εvap and εliq are both set to be 0.
If liquid phase volume fraction is smaller than 10−5, the value of εliq is set to be 0.
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7.4.2.2.3 Summary The following equations summarize the two-phase wall heat
transfer coefficients for dispersed flow film boiling conditions:

hwall,` =
q
′′

wall,liq,rad

Twall − Tliq
, (819)

and

hwall,v =
q
′′
wall,vap,conv + q

′′

wall,vap,rad

Twall − Tvap
, (820)

with q′′wall,liq,rad given by Equation (801), q′′wall,vap,conv given by Equation (786), and q′′wall,vap,rad
given by Equation (802).

7.4.2.3 Inverted Slug Film Boiling Under post-CHF condition, when the void frac-
tion is between 0.6 and 0.9, wall boiling heat transfer mode is inverted slug film boiling,
which is modeled as a transition region between the inverted annular film boiling and the
dispersed flow boiling boiling regions. Following the TRACE manual [2], a linear inter-
polation is used for each phase k:

hwall,k = wfhwall,k,IAFB + (1− wf)hwall,k,DFFB , (821)

in which the subscripts IAFB and DFFB stand for inverted annular film boiling and dis-
persed flow film boiling conditions, respectively. The weighting factor is defined as

wf = x(2− x) , (822)

with
x =

0.9− αvap
0.9− 0.6

. (823)

7.4.2.4 Transition Boiling Under post-CHF conditions, when the wall temperature is
smaller than the minimum film boiling temperature, Tmin, the wall boiling heat transfer
mode is considered to be transition boiling. The minimum film boiling temperature, Tmin,
is given as a function of the liquid phase pressure:

Tmin,low(pliq) = Tmin,sat −
x · 104

2.82 + 1.22× 10−6pliq
(824)

for pressure smaller than 9 MPa, and

Tmin,high(pliq) =
[
Tmin,low(pliq = 9× 106)− Tsat

] pcrit − pliq
pcrit − 9× 106

+ Tsat (825)
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for pressure greater than 9 MPa. The static flow quality is given by

x =
h̄− hliq,sat
hvap − hliq,sat

, (826)

with
h̄ =

αliqρliqhliq + αvapρvaphvap
αliqρliq + αvapρvap

. (827)

The Groeneveld-Stewart correlation for saturated water is given by

Tmin,sat = 557.85 + 44.1(pliq · 10−6)− 3.72(pliq · 10−6)2 . (828)

The wall-to-fluid heat transfer coefficients are then given as

hwall,` = (hwall,`)TB + (1− wfTB)(hwall,`)FB , (829)

and
hwall,v = (1− wfTB)(hwall,v)FB , (830)

with

(hwall,`)TB =
wfTBq

′′
CHF

Twall − Tliq
. (831)

The two heat transfer coefficients, (hwall,`)FB and (hwall,v)FB are calculated from the film
boiling heat transfer correlations. The weighting function, wfTB, is modeled as

wfTB =
√

1− αvap
(
Twall − Tmin
TCHF − Tmin

)2

, (832)

in which Tmin is given by Equation (824) or (825), depending on pressure, and TCHF is the
wall temperature when CHF occurs. As in TRACE [2], an iterative method is implemented
to solve for TCHF from

q
′′

NB(TCHF ) = q
′′

CHF , (833)

in which q′′NB is calculated from Equation (772), and q′′CHF is given by the 1995 AECL-
IPPE CHF table as a function of pressure, mass flux, and flow quality:

q
′′

CHF = f(p,G, x) . (834)

The details on the 1995 AECL-IPPE CHF table are not given in this document, but it can
be found in the TRACE manual [2] or the original paper [112].
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8 Heat Conduction Model

8.1 Heat Conduction Model

The heat conduction model calculates the temperature distributions in the solid compo-
nents in the nuclear reactor system, such as the fuel, pipe walls, core barrel and core ves-
sel, steam generator tubes, etc. It consists of a single, simplified energy balance equation,
i.e., the transient heat conduction equation

ρCp
∂T

∂t
−∇ · (k∇T )− q′′′ = 0 (835)

where ρ, Cp, k are density, specific heat, and thermal diffusivity, respectively, of the solid
materials. q′′′ is the volumetric heat source. Boundary conditions include three general
types. The first type is the Dirichlet boundary condition, which provides a fixed boundary
temperature

Tbc = T0 . (836)

The second type is the Neumann boundary condition, which provides a heat flux boundary
condition

q′′bc = −k ∂T
∂n̂bc

= q′′0 . (837)

The third type is the Robin boundary condition, which provides the convective heat trans-
fer boundary condition

− k ∂T
∂n̂bc

= hconv(Tcoolant − Tbc) . (838)

Both 1-D and 2-D solutions for the heat conduction model are available in RELAP-7.

8.2 Material Properties

Thermal properties, such as thermal conductivity k, material density ρ, and specific heat
capacity Cp, for three materials are implemented in RELAP-7: uranium dioxide, the gas
of the gap between the fuel rods and their cladding, and zircaloy. The implementation is
consistent with values used in MATPRO [113] whenever possible. The constant room-
temperature densities (ρ) are stored and are multiplied by temperature-dependent specific
heat capacities (Cp) to generate the volumetric heat capacities. For all of the properties,
constant values are assumed beyond the specified temperature ranges. Arbitrary low and
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high values of 5 and 5000K are included to avoid problems with out-of-range material
property data.

8.2.1 Uranium Dioxide

The reference density for uranium dioxide is ρ = 10980 kg/m3. Its specific heat capac-
ity information is provided in Section 2.2 of the MATPRO manual. Assuming that the
material is pure UO2 (with no PuO2), and that the oxygen-to-metal ratio is 2.0,

Cp =
296.7× 535.2852

T 2
(
exp

(
535.285
T

)
− 1
)2 exp

(
535.285

T

)
+ 2.43× 10−2T

+
2× 8.745× 107 × 1.577× 105

2× 8.3143T 2
exp

(
−1.577× 105

8.3143T

)
.

The uranium dioxide thermal conductivity data are taken from Section 2.3 of the MATPRO
manual. The general equation for the thermal conductivity of solid fuel is

k =
D

1 + T ′(1−D)

Cv
(A+BT ′′)(1 + 3eth)

+ 5.2997× 10−3T exp

(
−13358

T

)[
1 + 0.169

(
13358

T
+ 2

)2
]

(839)

where k is thermal conductivity (W/m-K), D is the fraction of theoretical density (dimen-
sionless); a value of 0.95 is currently assumed. A is a factor proportional to the point
defect contribution to the phonon mean free path. Assuming an oxygen-to-metal ratio of
2.0, this factor is 0.339 m-s/kg-K. B is a factor proportional to the phonon-phonon scat-
tering contribution to the phonon mean free path. Assuming no plutonium, this factor is
0.06867 m-s/kg-K. Cv is the phonon contribution to the specific heat at constant volume
(J/kg-K). For pure UO2, this is given by

Cv =
296.7× 535.2852

T 2
[
exp

(
535.285
T

)
− 1
]2 exp

(
535.285

T

)
(840)

eth is the linear strain term for temperatures above 300 K (dimensionless), which is given
by

eth =
∆L

L0

= 1.0× 10−5T − 3.0× 10−3 + 4.0× 10−2 exp

(
−6.9× 10−20

1.38× 10−23T

)
(841)
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where T is fuel temperature (K). If the fuel temperature is less than 1364K, T ′ = 6.5 −
0.00649T . For temperatures greater than 1834 K, T ′ = −1. For values between these two,
interpolation is employed (between these two temperatures).

8.2.2 Zircaloy

The reference density of zircaloy is 6551 kg/m3. Its specific heat capacity is obtained
by table look-up (see Table 4-2 in the MATPRO manual) with a temperature range of
300–1248 K. The zircaloy thermal conductivity is taken from Section 4.4 of the MATPRO
manual. The equation used is

k = a0 + a1T + a2T
2 + a3T

3 (842)

for 300 < T < 2098K, and k = 36 for T ≥ 2098K. The remaining ai parameters in (842)
are given in Table 8.

Table 8. Zircaloy thermal conductivity parameters.

a0 7.51
a1 2.09× 10−2

a2 −1.45× 10−5

a3 7.67× 10−9

8.2.3 Fuel Rod Gap Gas

Representative gap gas properties are developed for a combination of fill and fission prod-
uct gases. A 0.1066/0.1340/0.7594 mole fraction He/Kr/Xe mixture is modeled. A repre-
sentative fuel rod internal pressure of 4.1 MPa is assumed to determine the gap gas density.
Using the perfect gas relation and a temperature of 300 K yields ρ = 183.06 kg/m3. Using
the perfect gas relation, the specific heat capacity is determined to be Cp = 186.65 J/kg-
K. From Section 12.1.1 of the MATPRO manual, the gas mixture thermal conductivity is
given by

kmix =
n∑
i=1

[
kixi

xi +
∑n

j=1(1− δij)ψijxi

]
(843)
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where

ψij = φij

[
1 + 2.41

(Mi −Mj)(Mi − 0.142Mj)

(Mi −Mj)2

]
(844)

and

φij =

[(
1 + ki

kj

)1/2 (
Mi

Mj

)1/4
]2

2
2
3

(
1 + Mi

Mj

)1/2
(845)

and n is the number of components in mixture. Mi is the molecular weight of compo-
nent i (kg), xi is the mole fraction of component i, and ki is the thermal conductivity
of component i (W/m-K). The thermal conductivities of the three elements are given by
kHe = 2.639× 10−3T 0.7085, kKr = 8.247× 10−5T 0.8363, kXe = 4.351× 10−5T 0.8616. Us-
ing these equations, thermal conductivity values are provided, as a function of the mixture
temperature, for temperatures from 300 to 3000K.

9 Component Models

The RELAP-7 code is an advanced system analysis tool based on components to represent
the major physical processes in a reactor system. A real reactor system is very complex
and contains hundreds of different physical components. It is impractical to resolve the
real geometry of the entire system. Instead simplified thermal hydraulic models are used
to represent (via “nodalization”) the major physical components and describe the major
physical processes (such as fluids flow and heat transfer). The main types of components
developed in RELAP-7 are the following:

• one-dimensional (1-D) flow components,

• zero-dimensional (0-D) boundary components,

• zero-dimensional (0-D) junction components, and

• two-dimensional (2-D) heat structure components.
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9.1 Pipe

Pipe is the most basic component in RELAP-7. It is a 1-D component which simulates
thermal fluids flow in a pipe. Both a constant cross section area and a variable cross section
area options are available for the Pipe component. The wall friction and heat transfer
coefficients are either calculated through closure models or provided by user input. The
pipe wall temperature can be provided as the wall heat transfer boundary condition. All
the thermal fluid-dynamic models described in Chapters 2, 3, and 6 are available in the
pipe component which includes the isothermal flow model, single-phase non-isothermal
flow model, fully non-equilibrium 7-equation two-phase model, and the much simpler
homogeneous equilibrium two-phase flow model.

9.2 Pipe Boundaries

Pipe or duct inlets and outlets, as well as pipe or duct closed ends are treated as zero-
dimensional (0-D) components for setting boundary conditions. Chapter 5 describes pipe
or duct boundary conditions in detail.

9.3 PipeWithHeatStructure

The PipeWithHeatStructure component simulates fluids flow in a 1-D pipe coupled with
1-D or 2-D heat conduction through the pipe wall. The adiabatic, Dirichlet, or convective
boundary conditions at the outer surface of the pipe wall are available. Either a plate type
or cylindrical type of heat structure can be selected. Volumetric heat source within the
fluids or solid materials can be added.

9.4 CoreChannel

The CoreChannel component is a composite component designed to simulate the coolant
flow and heat conduction inside a fuel rod as well as the conjugate heat transfer between
the coolant and the fuel rod. In this component, the fuel rod is divided into the same
number of segments as that of the coolant flow pipe elements. Each fuel rod segment is
further simulated as 1-D or 2-D heat conduction model perpendicular to the fluid flow
model. Both plate type fuel rod and cylindrical fuel rod type can be simulated. The
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solid fuel part is able to deal with typical LWR fuel rod with complex clad/gap/fuel pellet
geometries. The flow model and conjugate heat transfer model are fully coupled.

9.5 HeatTransferFromHeatStructure

This component couples together a flow channel and a heat structure via convective heat
transfer exchange terms. Figure 11 gives an example where a cylindrical fuel rod heat
structure (with fuel, gap, and cladding regions are present) is coupled to a 1-D flow chan-
nel. The vertical dimension is the dimension of the flow channel, which in this section will
be called x, and the horizontal dimension of the heat structure will be referred to as y (in
cylindrical coordinates, this is r).

Figure 11. Heat transfer between 2-D heat structure and 1-D flow
channel
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On the heat transfer surface of the heat structure, the heat flux q from the heat structure,
with surface temperature Twall, to the flow channel on phase k, with temperature Tk, is

q(x) = hk(x)(Twall(x)− Tk(x)) , (846)

where hk is the heat transfer coefficient of phase k. Now suppose that the heat structure has
a heated perimeter Phf in contact with the flow channel. Then the following term appears
on the right-hand side as a volumetric term of the energy equation:∫

X

hk(Twall − Tk)Phf dX . (847)

On the heat structure side, to ensure energy conservation, the term added to the RHS
for each phase is the following, added:∫∫

A

fhfhk(Tk − Twall) dA , (848)

where fhf is the ratio of the heated perimeter to the total perimeter:

fhf ≡
Phf

P
. (849)

For plate heat structure geometry, the perimeter P is simply the depth d. For cylindrical
heat structure geometry, the perimeter is the circumference of the cylindrical surface in
contact with the flow channel.

9.6 Junction

RELAP-7 uses a novel zero-volume, 0-D junction model designed for compressible flow
in a component called Junction. Here, a brief description of the model is given; a full
report is given in [114].

The compressible junction model employs a single strong constraint: conservation of
mass at the junction: ∑

i∈IJ

(ρuAn)i = 0 , (850)

where IJ is the set of node indices corresponding to nodes at the junction. This equation
is associated with a new degree of freedom sJ, which represents the specific entropy at
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the junction. Note that this new variable does not appear in this equation; it appears in
the evaluation of the boundary fluxes for the nodes involved in the junction. As a side
note, this new degree of freedom does not technically require an initial condition, as the
old value is used nowhere except as the initial guess in iteration. However, most equations
of state will fail if one tried to call equation of state functions with an arbitrary value of
entropy such as zero, so this new variable should still be supplied with a physical guess
for beginning iteration in the first time step. The simplest guess for the first time step is
just to take the average of the initial entropies of the nodes connected at the junction:

sguess
J =

1

nIJ

∑
i∈IJ

si(t = 0) . (851)

After forming this guess before the first time step, sJ is solely updated via Newton updates,
just like the other degrees of freedom.

Conservation of energy at the junction,∑
i∈IJ

(ρuHAn)i = 0 , (852)

is enforced weakly using the following definition for the junction specific total enthalpy:

HJ =


∑

i∈IJ
in

(ρuAH)i∑
i∈IJ

in
(ρuA)i

IJ
in 6= ∅

1
nIJ

∑
i∈IJ

Hi otherwise
, (853)

where IJ
in is the subset of IJ corresponding to pipes that are inlets to the junction:

IJ
in ≡ {i ∈ IJ : uini > 0} . (854)

The first branch of the conditional corresponds to the most common case, where there is at
least one inlet to a junction. The second branch is a fail-safe, which can become necessary
during iteration or when velocities are zero.

For a given junction, the contributions to the nonlinear residual for a node i, associated
with one of the connected pipes, are the following:

rmass
i (U) = ρb

iuiAini , (855)

rmomentum
i (U) =

(
ρb
iu

2
i + pb

i

)
Aini , (856)

renergy
i (U) = ρb

iuiH
b
iAini . (857)
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The superscript “b” on density, pressure, and specific total stagnation enthalpy denotes
a boundary quantity; this is a quantity may depend on more than just the corresponding
interior solution value. Each of these may also depend on exterior data, namely, values
from the junction. Since velocity always comes from the solution, it lacks the superscript.

The following table shows how ρb
i , p

b
i , and Hb

i are computed for the cases of inlet and
outlet to the junction.

Junction Inlets Junction Outlets
ρb
i = ρi (858) Hb

i = HJ (859)

h̃i = HJ −
1

2
u2
i (860) pb

0,i = p0,J −Ki (p0,J − pi)
(861)

pb
i = p(h̃i, sJ) (862) sb

i = s(Hb
i , p

b
0,i) (863)

eb
i = e(pb

i , ρ
b
i ) (864) hb

i = HJ −
1

2
u2
i (865)

Eb
i = eb

i +
1

2
u2
i (866) pb

i = p(hb
i , s

b
i ) (867)

Hb
i = Eb

i +
pb
i

ρb
i

(868) ρb
i = ρ(pb

i , s
b
i ) (869)

9.7 VolumeJunction

The volume junction model is a 0-D component representing a joint/junction model with
volume (inertia) effects considered. This model conserves the mass and energy among all
connecting components. The governing equations of the mass and energy conservation for
the VolumeJunction component are

d(ρvbVvb)

dt
+

N∑
i=1

(ρu)i · n̂iAi = 0 (870)

d((ρe)vbVvb)

dt
+

N∑
i=1

((ρe)i + Pi)ui · n̂iAi = 0 (871)
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where ρvb and Vvb are the density and volume of the VolumeJunction component
respectively. (ρu)i is the mass flux at the connecting nodes. ui is the fluid flow velocity
at the connecting nodes. Ai is the flow area of the connecting components. Pi is the
pressure at the connecting nodes. N is the number of connecting components. (ρe)vb is
the internal energy of the VolumeJunction component and (ρe)i is the internal energy
at the connecting nodes. The internal energy, instead of the total energy, is used in the
energy equation since the energy changes due to the work of all the forces is difficult to
capture in the VolumeJunction component and thus neglected (except the pressure).
This assumption is valid for low speed flow applications.

The momentum conservation is more difficult to model in this 0-D component. A
simplified model is used to account for various pressure losses in the VolumeJunction
component.

Pi = Pvb + ∆Pacc + s∆Pform + ∆Pg (872)

where the pressure loss due to acceleration is: ∆Pacc = 1
2
(ρu2)vb − 1

2
(ρu2)i. The variable

s = 1 if the fluids flow into the VolumeJunction component while s = −1 if the fluids
flow out of the VolumeJunction component. The pressure loss due to the form loss
is: ∆Pform = 1

2
K(ρu2)i. The pressure loss due to the gravity is ∆Pg = ρvb∆H , and ∆H

is the height difference between the elevation of the center of the VolumeJunction
component and the elevation of the connecting components.

Note that the friction loss is neglected in this model. This is because the friction loss
is dependent on the flow path, and it is very difficult (and non-physical) to model the
friction loss in the 0-D component. On the other hand, the friction loss in a large volume
is always very small. If the friction loss has to be considered, the form loss coefficient can
be adjusted to account for it.

The above simplifications of modeling the momentum conservation works well as long
as the pressure propagation is much faster than the fluid transport, which is true for incom-
pressible flows and low speed compressible flows.

9.8 Pump

The simplified pump model is based on three assumptions:

• quasi-steady state,

• incompressible flow,
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• and 100% pump efficiency.

Currently, the RELAP-7 pump designed as one 0-D junction component which provides:

• one BC for upstream pipe: pressure

• two BCs for downstream pipe: pressure and total energy.

Only one scalar variable –pump pressure pJ is defined as the unknown for the pump model,
which uses the mass balance as the nonlinear equation:

(ρu)1A1n̂1 + (ρu)2A2n̂2 = 0 , (873)

where ρu is the momentum for the connecting pipes, A the cross-section area, and n̂ is
the direction normal (n̂ = 1 for the inlet and n̂ = −1 for the outlet). It is assuming that
internal energy does not change through a pump, so

eout = ein = eJ . (874)

Pressures at inlet and outlet are calculated with incompressible flow Bernoulli’s equation.
It is also assumed that the pump work is added to the fluid only in the entrance segment
and the loss in the exit segment is negligible. For normal flow

p1 = (pJ +
1

2
ρJu

2
J)− ρ1gH −

1

2
ρ1u

2
1 (875)

p2 = (pJ +
1

2
ρJu

2
J)− 1

2
ρ2u

2
2 (876)

where
ρJ = ρ(eJ , pJ) (877)

uJ =
ρ1u1A1

ρJAJ
(878)

g is the gravity constant and H is the pump head. H can be set as an input parameter
which can be changed through the control system to simulate dynamic process such as
coast-down, or H can be calculated by coupling with a shaft work, i.e., provided by a
turbine,

H =
Ẇt

ρ1u1A1g
(879)
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where Ẇt is the turbine shaft power. Downstream total energy is calculated by

ρEbc = ρbc

(
eJ +

1

2
u2
bc

)
. (880)

For reverse flow, the pump is treated as a resistance junction. The reverse form loss coeffi-
cients for inlet (K1) and outlet (K2) are given by the user. The pressures at inlet and outlet
for reverse flow conditions are

p1 = (pJ +
1

2
ρJu

2
J)− 1

2
(1 +K1)ρ1u

2
1 (881)

p2 = (pJ +
1

2
ρJu

2
J)− 1

2
(1−K2)ρ2u

2
2 . (882)

The pump can also be simulated as a time dependent junction with given mass flow rate as
a function of time.

9.9 Turbine

A turbine is a device that converts energy contained in high-pressure and high-temperature
fluid into mechanical work. The complicated configuration of a turbine precludes a com-
plete first-principle model, at least for the purpose of system transient calculations. In RE-
LAP5 [23], quasi-steady state mass, momentum, and energy conservation equations are
used for flow across a turbine stage. However, several questionable assumptions, such as
constant density across the turbine blade stage, are used to derive the momentum equation.
For a complex curved flow path, it is almost impossible to derive an accurate 0-D momen-
tum equation. The force between the junction solid wall and the fluid is unknown due to
the lack of geometric definition in 0-D and no simple assumptions can be made. This is
why Bernoulli’s equation (or mechanical energy equation) is used instead for 0-D junction
models in current reactor safety system codes such as RELAP5 [23], TRAC [115], and
TRACE [2]. However, for compressible flow in a turbine, Bernoulli’s equation for isen-
tropic compressible flow is identical to the total energy conservation equation. Hence, the
Bernoulli’s equation cannot be used for momentum.

Lacking an equation for momentum, we instead use turbine characteristics curves for
momentum, which is based on actual dynamical turbine performance data. Turbine charac-
teristics curves reflect the complex relationships of the non-dimensional turbine mass flow
rate and turbine efficiency with pressure ratio and the non-dimensional rotational speed.
Fig. 12 shows one example of turbine characteristics curves [3]. In the figure, subscript 03
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indicates the upstream stagnation condition, subscript 04 indicates the downstream stag-
nation condition and N is the rotational speed. Note that the curves dynamically capture
the choking behavior. To further simplify the curves, a couple of assumptions are made:
(1) Turbine thermal efficiency is constant, and (2) Non-dimensional mass flow rate is not
a function of non-dimensional rotational speed (by noting that all the curves for differ-
ent rotational speeds tend to collapse together). With these assumptions, an equation for
rotational speed is not needed, and only one characteristics curve for mass flow rate is
sufficient to establish the equation for momentum.

Figure 12. Turbine characteristics (credit of Saravanamuttoo,
Rogers, and Cohen [3]).

Based upon the aforementioned discussion, we developed a new simple turbine compo-
nent model as a junction without volume. Thermal inertia in the solid structures and fluid
is ignored, similar to that in RELAP-5. Fig. 13 shows the T -s diagram for a thermody-
namic process in a turbine. Point 1 represents inlet static condition and point 2 represents
outlet static condition; point 2s is the end point for a reversible process; point 01, 02, and
02s represent the stagnation conditions corresponding to points 1, 2, and 02, respectively.
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Figure 13. T -s diagram for a turbine.

Because a quasi-steady state turbine is a 0-D component which provides

• one BC for inlet pipe: p1 (inlet pressure)

• two BCs for outlet pipe: p2 (outlet pressure), ρ2 (outlet density)

• turbine shaft power: Ẇt

four equations are needed to close the system. The first one is mass conservation Eq. (873).
The mass flow rate is calculated as ṁ = ρuA.

As discussed before, turbine characteristics are used for the momentum equation. As-
suming constant thermal efficiency and ignoring rotational speed effect, we have

ṁ
√
T01

p01

ṁmax
√
T01r

p01r

= f(p01/p02) . (883)

The subscript r denotes nominal design reference value and 0 denotes stagnation con-
dition. ṁmax is the nominal maximum design mass flow rate through the turbine. The
turbine characteristic curve f(p01/p02) should come from turbine vendors. According to
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reference [116], the curve for a HP (High Pressure) steam turbine is defined as

f(p01/p02) =

√
1−

(
p02

p01

)2

. (884)

This equation matches the real test data very well. However, this curve is not valid when
the pressure ratio is equal or less than 1. Therefore, a similar smooth curve is used

f(p01/p02) = tanh

(
β

(
p02

p01

− 1

))
(885)

where β is a constant and is calculated by the following formula

tanh

(
β

(
p01r

p012

− 1

))
=

ṁr

ṁmax

. (886)

Therefore, β is determined by the design pressure ratio and the ratio of nominal mass flow
rate at design point with the maximal mass flow rate. The energy equation for turbine is

η =
h01 − h02

h01 − h02s

(887)

where η is the turbine thermal efficiency, and h the enthalpy. Fig. 13 shows the location of
the thermodynamic states on a T -s diagram.

Turbine shaft work is calculated by

Ẇt = ṁ(h01 − h02) . (888)

Eqs. (873), (883) and (887) are used to solve for p1, p2, and ρ2, and Eq. (888) is used to
compute turbine power. To derive stagnation states, recognize that

h0 = h+
1

2
u2 (889)

where u is the velocity. Then assuming an isentropic process, from the static state, (h1, p1),
the stagnation state (h01, p01) may be found. For ideal gas, the following equations hold
(pages 54 to 56, ref [3])

p0 = p

(
1 +

γ − 1

γ

ρu2

2p

)γ/(γ−1)

(890)

T0 = T

(
p0

p

)(γ−1)/γ

(891)
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where γ is the ratio of specific heats. h1, u1, and T1 are obtained from turbine inlet pipe
as coupled variables and p1 is a scalar variable unknown. h01 is calculated according to
Eq. (889). p01 is calculated according to Eq. (890). T01 is calculated according to Eq. (891).

The pressure p2 and density ρ2 are scalar variable unknowns. According to an EOS
(equation of state) relationship, h2 is evaluated

h2 = h (p2, ρ2) (892)

u2 is obtained from turbine outlet pipe as a coupled variable. h02 is calculated according
to Eq. (889). p02 is calculated according to Eq. (890). To derive h02s, we need two ther-
modynamic states at 2s. Note p2s = p2. We can obtain the density at 2s by following the
isentropic line from point 1 (see Fig. 13)

ρ2s

ρ1

=

(
p2

p1

)1/γ

. (893)

According to the EOS relationship, h2s is evaluated with p2 and ρ2s. Now h02s can be
calculated according to Eq. (889). When the stagnation pressure at the inlet is less than
the stagnation pressure at the outlet, the turbine is treated as a closed valve. Major phys-
ical parameters for the turbine model include thermal efficiency, nominal mass flow rate,
design pressure ratio, and design stagnation inlet temperature and pressure.

9.10 SeparatorDryer

Boiling Water Reactors (BWRs) use a steam separator to increase the quality of steam
prior to generation of mechanical energy in the turbine. A steam separator component
is based on the principle of centrifugal separation, where the liquid/gas phase separation
occurs as a mixture of water and steam flows upward in a vortex motion within vertical
separator tubes. Therefore, the outflows of the steam separator are a flow of steam from
the top exit and a flow of liquid water from the discharge to the bulk water surrounding the
separator barrel. Typically, the quality of the steam at the outlet of the separator is at least
90%. In addition, steam dryers are used to further increase the quality of steam to ensure
that the steam is dry.

In RELAP-7 the separator dryer component is developed to model both the steam
separators and moisture dryers together. Currently only an ideal separation model with
perfect steam separation has been implemented into RELAP-7. The mechanistic separator

208



and dryer models will be implemented in the future. The steam SeparatorDryer
component has one inlet and two outlets. Each connection has a form loss coefficient
K, which generally accounts for pressure loss due to expansion/contraction, mixing, and
friction.

The conservation equations of mass and energy for the SeparatorDryer model are
the following:

V
dρsd
dt

+
3∑
i=1

(ρu)i · n̂iAi = 0 (894)

V
d(ρe)sd
dt

+
3∑
i=1

((ρe)i + Pi)ui · n̂iAi = 0 (895)

where ρsd and (ρe)sd are the density and internal energy of the SeparatorDryer component
respectively. V is the volume of the SeparatorDryer component. (ρu)i is the mass
flux at the connecting nodes. ui is the velocity at the connecting nodes. Ai is the flow area
of the connecting component. (ρe)i is the internal energy of the connecting nodes. Pi is
the pressure at the connecting nodes.

An incomplete form of the momentum equation is used to account for the various
pressure losses in the SeparatorDryer component:

Pi = Psd + ∆Pacc + s∆Pform + ∆Pg (896)

where s = 1 if fluids flow into SeparatorDryer and s = −1 if fluids flow out of
the SeparatorDryer. Psd is the reference pressure of the SeparatorDryer which
is taken as the value in the center of SeparatorDryer. The pressure loss due to ac-
celeration is: ∆Pacc = 1

2
(ρu2)sd − 1

2
(ρu2)i. The pressure loss due to the form loss is:

∆Pform = 1
2
K(ρu2)i. The pressure loss due to the gravity is ∆Pg = ρsd∆H , and ∆H is

the height difference between the elevation of the connecting pipe and the center elevation
of the SeparatorDryer component.

9.11 Valve

The current valve component developed in RELAP-7 is a simplified model to simulate the
fundamental functions (i.e. open and close) of generic valves. The valve component is a
junction type of components and it connects one pipe on each side. The valve is initiated
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with a given user input (i.e., fully open or fully closed). It then starts to react (i.e., close
or open) and is triggered either by a preset user given trigger time or by a trigger event,
which requires the RAVEN code control logic. In its opening status, either fully open or
partially open, it serves as a regular flow junction with form losses. In its fully closed
status, the connected two pipes are physically isolated. The current valve model also
includes the gradually open/close capability similar to a motor driven valve to simulate
the physical behavior of a valve open/close procedure. It also has the benefit of avoiding
spurious numerical oscillations that are caused by an instantaneous open/close procedure.
Additional, specific valve components to be developed in the future (e.g., gate valve and
check valve) are planned to enhance the RELAP-7 capabilities for engineering analysis.

9.12 CompressibleValve

The valve model introduced in the previous section is for low speed nearly incompressible
flow cases. For reactor safety simulations, there are cases where high speed compressible
flow models are needed. One such example is a safety/relief valve (SRV), which either is
activated by passive setting points such as pressure (safety valve mode) or by active control
actions through an electric motor or compressed air (relief mode). Normally, a SRV would
discharge pure gas or steam. However, there are transients in a LWR that can involve
the discharge of two-phase mixture or pure liquid through a SRV [117]. As an initial
version of simplified SRV model, only steam/gas is considered. Since the SRV always has
the minimal cross section area along the release line, it is assumed that choking always
happens in the throat of the SRV. To further simplify the model, is is further assumed that
choking will happen whenever the valve is open. Also, the steam/gas is currently treated
as an ideal gas.

The Compressible Valve is designed as a single 0-D junction component which pro-
vides:

• one BC for upstream pipe: pressure (pi)

• two BCs for downstream pipe: momentum (ρu)o and total enthalpy (Ho).

Therefore three equations are needed to close the system. First consider the case when the
valve is open. The pi unknown will correspond to the mass conservation:

(ρu)1A1n̂1 − (ρu)oA2n̂2 = 0 (897)
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where (ρu)1 is the coupled momentum for the connecting inlet pipe end, A the cross-
section area, and n̂ direction normal (n̂1 = 1 for the inlet and n̂2 = −1 for the outlet). The
(ρu)o unknown corresponds to the following equation for the choked condition

(ρu)oA2n̂2 − ṁc = 0 (898)

where ṁc is the critical mass flow rate calculated by the equation for isentropic ideal gas
flow [118]

ṁc = At(ρu)c = At (γpcρc)
1/2 (899)

where At is the cross-section area at the valve throat, which can be controlled by the valve
action, i.e., from 0 to the fully open area. The critical pressure pc and the critical density
ρc are determined by

pc
pi0

=

(
2

γ + 1

) γ
γ−1

(900)

ρc
ρi0

=

(
2

γ + 1

) 1
γ−1

(901)

where the subscript i0 indicates the stagnation condition for the inlet. For non-ideal choked
flow (not to be confused with non-ideal gas) through a valve, mc can be modified by
multiplying the valve coefficient Cv [118] which is defined as the ratio of real mass flow
rate over the ideal mass flow rate. The valve coefficient model will be included in the near
future.

For ideal gas and isentropic flow, the steady state mass flow rate is calculated as

ṁsub = A2

{
2

(
γ

γ − 1

)
pi0ρi0

(
p2

pi0

) 2
γ

[
1−

(
p2

p0i

) γ−1
γ

]} 1
2

. (902)

By comparing the subsonic mass flow rate and the choking mass flow rate, we can de-
termine whether choking happens. When ṁsub ≥ ṁc, Eq. (898) is used for momentum;
Otherwise subsonic flow momentum equation is used:

(ρu)oA2n̂2 − ṁsub = 0. (903)

The Ho unknown will correspond to the energy conservation:

(ρu)1A1n̂1H1 − (ρu)oA2n̂2Ho = 0 . (904)
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When the valve is fully closed, the following equations are used for pi, (ρu)o, and Ho,
respectively

pi − p1 = 0 (905)
(ρu)o − (ρu)2 = 0 (906)

Ho −H2 = 0 . (907)

p1, (ρu)2, and H2 are coupled variables from the connecting pipe ends. The pipe end BCs
are treated as solid wall conditions when the valve is fully closed. Subsonic compress-
ible flow model, valve coefficient model, stiffened gas model, and two-phase critical flow
model will be included in a later version.

9.13 WetWell

The wet well refers to the suppression chamber of a BWR reactor, which is composed of
water space and gas space. The 0-D wet well model simulates both spaces. Fig. 14 shows
the schematic of the simplified model. Major assumptions include: (1) the suppression
pool is well mixed; (2) the kinetic energy in both spaces is ignored, therefore the water
space pressure follows a hydrostatic distribution; (3) no mass transfer between water and
gas space; (4) gas space is filled with 100% nitrogen gas; (5) the geometry of the wet well
is rectangular; and (6) no steam venting from dry well to the suppression pool. The wet
well model developed with these assumptions is adequate to simulate slow transients such
as extended station black-out transients. However, the current model is not suitable for
LOCA analysis. With these assumptions, mass and energy balance equations apply for
both gas and water spaces. By assuming one pressure for the gas space, another equation
for the water level is obtained. The mass conservation equation for the gas space is

dmg

dt
= −ṁv (908)

where mg is the gas mass and ṁv is the venting mass flow rate to the dry well which is
obtained from the connected pipe controlled by the vacuum breaker.

Energy conservation equation for the gas space is

d(me)g
dt

= Acα (Tw − Tg)− ṁvHv (909)

where (me)g is the total internal energy (also total energy since kinetic energy is assumed
to be 0) for the gas space, Ac the average cross section area for the wet well, α the effective
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Figure 14. A simplified wet well model.

heat transfer coefficient given by user input, Tw and Tg are temperatures for water and gas,
respectively. Hv is the total enthalpy from upstream. The small pressure work due to the
change of the volume is ignored since the change of water volume is slow and small due
to its tremendous volume. The gravity change inside the volume is ignored due to low
density.

The mass conservation equation for the water space is

dmw

dt
= ṁin − ṁout (910)

where mw is the total mass of water, ṁin is the inlet steam mass flow rate and obtained
from the connected steam pipe, and ṁout is the outlet water mass flow rate

ṁout = (ρu)outAout (911)

where (ρu)out the outlet momentum which is coupled from the connected water pipe, and
Aout the pipe cross section area.
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The total energy conservation equation for the water space is

d(me)w
dt

= ṁin (Hin + (zi − 0.5Lw)g)

− ṁout (Hout + (zo − 0.5Lw)g)

− Acα(Tw − Tg)− q̇ (912)

where (me)w is the total internal energy for the water space, Hin is the total enthalpy cou-
pled from the connecting steam pipe, zi is the inlet steam pipe end elevation relative to the
pool bottom, Lw is the pool water level, zo, of the outlet water pipe end elevation relative
to the pool bottom, q̇ is the active heat removal rate from the immersed heat exchanger,
and Hout is the total enthalpy for the outlet water pipe which can be calculated for outflow
as

Hout =
ρew + pw(ρw, 0, ρew)

ρw
+

1

2
u2
out . (913)

uout is the exit speed and is obtained from coupled water pipe end. The methods to cal-
culate the average water density ρw and specific volume energy ρew will be introduced
shortly. For inflow condition, Hout will be coupled from the pipe end. In Eq. (912), it is
assumed that the gravity center is at the half depth of the water pool. Reference pressure
in the water space is defined at the middle elevation of the pool

pw = pg +
1

2
Lwρwg (914)

where pw is the reference water pressure and pg the gas pressure. Pressure and temperature
are calculated from EOS relationships. The momentum of gas and water are assumed to
be 0. Therefore, the total energy is

ρEt = ρe = ρ
me

m
. (915)

In the code implementation of the wet well model, mg, (me)g, mw, (me)w, and Lw are
designated as the primary variables to be solve for, with corresponding equations (908),
(909), (910), (912), and (914). Another set of auxiliary variables is defined to close the
system, which include gas density ρg and water density ρw. Gas density is calculated
according to

ρg =
mg

Ac(Lt − Lw)
(916)

where Lt is the total effective height of the wet well. Similarly, the average water density
is calculated according to

ρw =
mw

AcLw
. (917)
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Initial conditions for the primary variables are calculated according to the initial water
level Lw(0), gas pressure pg(0), and gas temperature Tg(0). Boundary conditions for three
connecting pipes are set similarly as for the reverse pump BCs. For example, the inlet
steam pipe needs one BC pin

pin +
1

2
(ρu2)in = pi +Kin

1

2
(ρu2)in (918)

where Kin is the form loss coefficient and pi is the water pressure at the elevation of inlet
steam pipe end

pi = pw + (0.5Lw − zi)ρwg . (919)

The other two pipe’s BCs are set in a similar manner.

9.14 Subchannel

A fully coupled subchannel model for the single-phase has been implemented into RELAP-
7. The single-phase subchannel model includes four balance equations: mass, energy, ax-
ial momentum, and lateral momentum. The mass balance equation for the subchannel i
is

Ai
∂ρi
∂t

+
∂(ρiuiAi)

∂x
+
∑
j∈K(i)

wi,j = 0 (920)

where i is the index of subchannel i. Ai is the flow area for subchannel i. j is the index of
a subchannel which is adjacent to subchannel i. K(i) is the set of lateral interfaces (gaps)
on the boundary of subchannel i. wi,j = ρulsk is the mass flow rate per unit length in the
lateral direction across the gap k between subchannels i and j. sk is the width of gap k.

The axial momentum balance for subchannel i is

Ai
∂ρiui
∂t

+
∂(ρiuiuiAi)

∂x
+ Ai

∂Pi
∂x

+ Aigρi +

1

2

(
f

Dh

+K ′i

)
ρiui|ui|Ai +

∑
j∈K(i)

wi,ju
∗ +

∑
j∈K(i)

wti,j(ui − uj) = 0 (921)

where f is the wall friction coefficient, Dh is the subchannel hydraulic diameter, and K ′i
is the form loss coefficient. u∗ is the lateral donor axial velocity at gap face k. If the flow
is into the subchannel i, then u∗ = uj , otherwise, u∗ = ui. wti,j is the turbulent mixing
mass flow rate per unit length in the lateral direction at gap face k. wti,j is the fluctuating
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crossflow which is related to the eddy diffusely εt, bywti,j = εtρi
sk
lk

. In the current RELAP-
7 implementation, wti,j is calculated as wti,j = βskḠ, where β is the turbulent mixing
parameter and Ḡ is the average mass flux in the adjacent subchannels.

The lateral momentum balance for subchannel i is

∂wi,j
∂t

+
∂wi,jū

∂x
− sk
lk

(Pi − Pj) +
1

2

sk
lk
KG
|wi,j|
ρ̄s2

k

wi,j = 0 (922)

where ū = 1
2
(ui+uj) and ρ̄ = 1

2
(ρi+ρj). sk is the width of lateral gap k. lk is the distance

between centroids of subchannels i and j. KG is the lateral loss coefficient which accounts
for the friction and form pressure loss caused by the area change.

The total energy balance equation for subchannel i is

Ai
∂ρiEi
∂t

+∇ · (ρiuiHiAi) + ρigAiui +∑
j∈K(i)

wi,jH
∗ +

∑
j∈K(i)

wti,j(Hi −Hj) +
∑
j∈K(i)

k

li
(Ti − Tj) +

∑
r∈M(i)

φi,rhwawAi(Ti − Tw,r) = 0 (923)

where H = E + P
ρ

is the total enthalpy and H∗ is the donor total enthalpy. k is the fluid
thermal conductivity. φi,r is the heated perimeter fraction associated with the subchannel
i. M(i) is the set of fuel rods that surround the subchannel i. hw is the convective heat
transfer coefficient and aw is the ratio of heat transfer surface area to the fluid volume. Ti
is the fluids temperature in subchannel i and Tw,r is the fuel rod wall temperature which is
obtained from the solution of the heat conduction equation.

9.15 Reactor

The reactor component is a virtual component to allow users to specify the reactor power
(i.e., steady-state power or decay heat curve) or heat source.
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10 Reactor Kinetics Model

There will be two options available for the computation of the reactor power in the RELAP-
7 code. The first option is the point kinetics model; this option has been implemented into
RELAP-7. The second option will be a multi-dimensional neutron kinetics model. This
option, which is not available yet, will be achieved through the coupling with the Rat-
tleSnake code. RattleSnake is the Sn neutron transport code being developed at the INL
using the MOOSE framework. Chapter 8 has more in-depth discussions on this option.

The reactor point kinetics model is the simplest model that can be used to compute the
transient behavior of the neutron fission power in a nuclear reactor. The power is computed
using the space-independent, or point kinetics, approximation which assumes that power
can be separated into space and time functions. This approximation is adequate for cases
in which the space distribution remains nearly constant.

The point kinetics model computes both the immediate (prompt and delayed neutrons)
fission power and the power from decay of fission products. The immediate power is that
released at the time of fission and includes power from kinetic energy of the fission prod-
ucts and neutron moderation. Decay power is generated as the fission products undergo
radioactive decay. The user can select the decay power model based on the RELAP-7 ex-
act implementation of the 1979 ANSI/ANS Standard, the 1994 ANSI/ANS Standard, or
the 2005 ANSI/ANS Standard.

10.1 Point Kinetics Equations

The point kinetics equations are the following:

dn(t)

dt
=
ρ(t)− β

Γ
n(t) +

Nd∑
i=1

λiCi(t) + S (924)

dCi(t)

dt
=
βfi
Γ
n(t)− λiCi(t), i = 1, 2, . . . , Nd (925)

where t is time (s), n is the neutron density (neutrons/m3), ρ is the reactivity (only the time-
dependence has been indicated, however, the reactivity is dependent on other variables). βi
is the effective delayed neutron precursor yield of group i and β =

∑Nd
i=1 βi is the effective

delayed neutron fraction. Γ is the prompt neutron generation time (s). λi is the decay
constant of group i (1/s). Ci is the delayed neutron precursor concentration in group i
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(nuclei/m3). Nd is the number of delayed neutron precursor groups. fi = βi
β

is the fraction
of delayed neutrons of group i. S is the source rate density (neutrons/m3-s).

The neutron flux (neutrons/m2-s) is calculated as

φ(t) = n(t)v (926)

where v is neutron velocity (m/s). The fission rate (fissions/s) ψ(t) is calculated as

ψ(t) = V Σfφ(t) (927)

where V is the volume (m3) and Σf is the macroscopic fission cross section (1/m). The
reactor power is calculated from

Pf (t) = Qfψ(t) (928)

where Pf is the immediate (prompt and delayed neutron) fission power (Mev/s) and Qf is
the immediate fission energy per fission (Mev/fission).

10.2 Fission Product Decay Model

The 1979, 1994, and 2005 Standards for decay power can be implemented by advancing
the differential equations, which become

dγαj(t)

dt
=
Fγaαj
λαj

Fαψ(t)− λαjγαj(t) j = 1, 2, . . . , Nα (929)

where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 and 2005 Stan-
dards. The parameters a and λ were obtained by fitting to fission decay power data. The
fitting for each isotope used 23 groups (Nα = 23). For the 1979 Standard, data are pre-
sented for three isotopes, U235, U238, and Pu239. For the 1994 and 2005 Standards, data
are presented for four isotopes, U235, U238, Pu239, Pu241. Fγ is an input factor to allow
easy specification of a conservative calculation. It is usually 1.0 for best-estimate calcula-
tions. Fα is the fraction of fissions from isotope α. Summation of Fα over α is 1.0. The
uncorrected decay power is calculated as

P ′γ(t) =

NI∑
α=1

Nα∑
j=1

λαjγαj(t) (930)
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where NI = 3 for the 1979 Standard and NI = 4 for the 1994 and 2005 Standards. ψ is
the fission rate from all isotopes.

The 1979, 1994, and 2005 Standards use a correction factor to the energy from fis-
sion product decay to account for the effects of neutron absorption. The equation for the
correction factor is the following:

G(t) = 1.0 + (3.24E − 6 + 5.23E − 10t)T 0.4ψg (931)

where ψg is the number of fissions per initial fissile atom, T is the reactor operating time
including any periods of shutdown, and t is the time since shutdown. Limits on the quan-
tities are 1.0 ≤ ψg ≤ 3.0, T < 1.2614 × 108, and t < 104 seconds. The corrected decay
power is given by

Pγ = G(t)P ′γ . (932)

The RELAP-7 implementation of the 1979, 1994, and 2005 Standards is exact (i.e., not
a curve fit). The data for all standards are built into the code as default data, but the user
may enter different data.

10.3 Actinide Decay Model

The actinide model describes the production of U239, Np239, and Pu239 from neutron
capture by U238 using the descriptive differential equations

dγU(t)

dt
= FUψ(t)− λUγU(t) (933)

dγN(t)

dt
= λUγU(t)− λNγN(t) . (934)

The actinide decay power is calculated as

Pα(t) = ηUλUγU(t) + ηNλNγN(t) . (935)

The quantity FU is user-specified and is the number of atoms of U239 produced by neutron
capture in U238 per fission from all isotopes. A conservative factor, if desired, should be
factored into FU . The λ and η values can be user-specified, or default values equal to those
stated in the 1979, 1994, or 2005 ANS Standards can be used. The first equation describes
the rate of change of atoms of U239. The first term on its right hand side represents the
production of U239; the last term is the loss of U239 due to beta decay. The second equation
describes the rate of change of NP 239. The production of Np239 is from the beta decay of
U239, and Pu239 is formed from the decay of Np239.
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10.4 Transformation of Equations for Solution

The differential equations to be advanced in time are the point kinetics equations, fission
products decay equations, and actinide decay equations. Multiplying by V Σf andX which
is the conversion factor from MeV/s to Watts, the equations become

d

dt

[
Xψ(t)

v

]
=

[ρ(t)− β]Xψ(t)

Γv
+

Nd∑
i=1

λiXV ΣfCi(t) +XV ΣfS (936)

d

dt
[XΣfCi(t)] =

βfiXψ(t)

Γv
− λiXV ΣfCi(t) i = 1, 2, . . . , Nd (937)

d

dt
[Xγαj(t)] =

FγaαjFαXψ(t)

λαj
− λαjXγαj(t) j = 1, 2, . . . , Nα (938)

d

dt
[XγU(t)] = FUXψ(t)− λUXγU(t) (939)

d

dt
[XγN(t)] = λUXγU(t)− λNXγN(t) (940)

where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 and 2005 Stan-
dards. The total power PT is the sum of immediate fission power, corrected fission product
decay, and actinide decay power, and now in units of watts is

PT (t) = QfXψ(t) +G(t)

NI∑
α=1

Nα∑
j=1

λαjXγαj(t) + ηUλUXγU(t) + ηNλNXγN(t) (941)

whereNI = 3 for 1979 Standard andNI = 4 for the 1994 and 2005 Standard. For solution
convenience, the following substitutions are made:

ρ(t) = βr(t) (942)
Xψ(t) = ψ′(t) (943)

XV ΣfΓvS

β
= S ′ (944)

XV ΣfvCi(t) =
βfi
Γλi

Wi(t) i = 1, 2, . . . , Nd (945)

Xγαj(t) =
FγaαjFα
λ2
αj

Zαj(t) j = 1, 2, . . . , Nα (946)

XγU(t) =
FU
λU

ZU(t) (947)

XγN(t) = ZN(t) (948)
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where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 and 2005 Stan-
dards. The equations to be integrated are now

d

dt
ψ′(t) =

β

Γ

[
(r(t)− 1)ψ′(t) +

Nd∑
i=1

fiWi(t) + s′

]
(949)

d

dt
Wi(t) = λiψ

′(t)− λiWi(t) i = 1, 2, . . . , Nd (950)

d

dt
Zαjt = λαjψ

′(t)− λαjZαj(t) i = 1, 2, . . . , Nd (951)

d

dt
ZU(t) = λUψ

′(t)− λUZU(t) (952)

d

dt
ZN(t) = FUZU(t)− λNZN(t) (953)

where α = 1, 2, 3 for the 1979 standard and α = 1, 2, 3, 4 for the 1994 and 2005 standards.
The total power is given by

PT (t) = Qfψ
′(t) +G(t)

NI∑
α=1

Nα∑
j=1

FγaαjFαZαj(t)

λαj
+ FUηUZU(t) + ηNλNZN(t) (954)

where NI = 3 for the 1979 standard and NI = 4 for the 1994 and 2005 Standards.

10.5 Reactivity Feedback Model

The reactivity feedback model implemented in RELAP-7 is the same as the separable
model used for RELAP5. In the separable model, each effect is assumed to be indepen-
dent of the other effects. The model assumes nonlinear feedback effects from moderator
(thermal fluids) density and fuel temperature changes and linear feedback from moderator
and fuel temperature changes. The separable model defining reactivity is defined as:

r(t) =
ns∑
i=1

rsi(t)+

nρ∑
i=1

[WρiRρ(ρi(t))+aMi∆TMi(t)]+

nF∑
i=1

[WFiRF (TFi(t))+aFi∆TFi(t)]

(955)

The quantities rsi are obtained from input tables defining ns reactivity (scram) curves
as a function of time. Rρ is a table defining reactivity as a function of the current modera-
tor density of fluid ρi(t) in the thermal fluids volume i (density reactivity table). Wρi is the
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density volume weighting factor for volume i. ∆TMi(t) is the spatially averaged modera-
tor fluid temperature difference between the current time t and the start of the transient for
volume i. aMi is the volume fluid temperature coefficient (not including density changes)
for volume i and nρ is the number of thermal fluids volumes in the reactor core. The quan-
tity RF is a table defining the Doppler reactivity as a function of the heat structure plume
average fuel temperature TFi(t) in the heat structure. ∆TFi(t) is the difference between
the current time t and the start of the transient. WFi and aFi are the fuel temperature heat
structure weighting factor and the heat structure fuel temperature coefficient, respectively,
for heat structure i. Finally, nF is the number of fuel volumes in a reactor core.

Boron feedback is not provided, but will be added in a later version. The separable
model can be used if boron changes are quite small and the reactor is near critical about
only one state point.
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